搜索资源列表
Barcode_Delphi
- 二次开发模块 一、条形码的批量生成, 款式:由存货(7)+颜色(2)+尺码(2)+供应码(2)+年份(4)+月份(2)+流水号(6)自由组合生成 面料:由存货(7)+颜色(2)+供应码(2)自由组合生成 (1)由于每件款式的条码是唯一的,其数据量相当大,在数据库存储方面若按以往的方式处理,估计数据库是无法承受。故需采用新的存储方式,在这存储方面就需花较多的时间方可解决。 (2)条码生成后需同时往用友数据库(表:Inv
MIL-Ensemble
- This toolbox contains re-implementations of four different multi-instance learners, i.e. Diverse Density, Citation-kNN, Iterated-discrim APR, and EM-DD. Ensembles of these single multi-instance learners can be built with
boundsonLDPCandLDGM
- The paper is about bounds for LDPC and LDGM codes under MAP. A new method for analyzing low density parity check (LDPC) codes and low density generator matrix (LDGM) codes under bit maximum a posteriori probability (MA
revue_i3_05_01_02
- Cet article présente une méthodologie pour intégrer un nouveau type de contraintes, formées de relations spatiales, dans des modèles déformables. Les relations spatiales telles que les directions, les distances, le
ClusterEnsembleV10
- Alexander Strehl的CLUSTER ENSEMBLE算法----------------------------------------------------------------------- CLUSTERENSEMBLE README Alexander Strehl Version 1.0 2002-04-20 ---------------------------------------
Neural-Networks
- Typical case behaviour of spin systems in random graph and composite ensembles
Ali
- un ensembles d opérateurs C++ piloté par une interface pour le traitement d image de type RAW
Asymptotic-Spectra-of-Trapping-Sets
- Asymptotic Spectra of Trapping Sets in Regular and Irregular LDPC Code Ensembles
ClusterEnsembleV20
- 聚类集成算法CSPA、HGPA、MCLA的实现-three cluster ensembles algorithms cspa,hgpa and mcla
Software-faults-prediction-using-multiple-classif
- Abstract—In recent years, the use of machine learning algorithms (classifiers) has proven to be of great value in solving a variety of problems in software engineering including software faults prediction. This pap
OCD--code
- 通过对集成误差公式的理论分析,提出了一种能主动引导个体网络进行差异性学习的集成网络学习算法。该方法通过对集成误差的分解,使个体网络的训练准则函数中包含个体网络误差相关度的因素,并通过协同训练,引导个体网络进行差异性学习。该方法在基于油气分析的变压器故障诊断的实验结果表明,该方法的故障诊断准确率优于传统的三比值法与BP神经网络,其性能也比经典的集成方法Bagging和Boosting方法更稳定可靠。-A learning algorith
ADL-code
- 通过对集成误差公式的理论分析,提出了一种能主动引导个体网络进行差异性学习的集成网络学习算法。该方法通过对集成误差的分解,使个体网络的训练准则函数中包含个体网络误差相关度的因素,并通过协同训练,引导个体网络进行差异性学习。该方法在基于油气分析的变压器故障诊断的实验结果表明,该方法的故障诊断准确率优于传统的三比值法与BP神经网络,其性能也比经典的集成方法Bagging和Boosting方法更稳定可靠。-A learning algorith
anomaly-detection
- 自适应的基于ROC的HMMs在异常检测中的应用-Adaptive ROC-based ensembles of HMMs applied to anomaly detection
rister-icra07.pdf
- Integrated Debugging of Large Modular Robot Ensembles CATOMS
TP_13_12_2013
- Un ensembles des applications réaliser sous SDK xilinx pour FPGA Spartan 3E
Compressive-Sensing-for-Signal-Ensembles
- Compressive sensing (CS) is a new approach to simultaneous sensing and compression that enables a potentially large reduction in the sampling and computation costs for acquisition of signals having a sparse or compre
bce
- Code for Bayesian Cluster Ensembles
Ensemble Methods Foundations and Algorithms
- This book provides researchers, students and practitioners with an introduction to ensemble methods. The book consists of eight chapters which naturally constitute three parts.
决策树+神经网络
- 人工智能AI,决策树和神经网络的原理说明(MEMORY-EFFICIENT GLOBAL REFINEMENT OF DECISION-TREE ENSEMBLES AND ITS APPLICATION TO FACE ALIGNMENT)