文件名称:MIL-Ensemble

介绍说明--下载内容均来自于网络,请自行研究使用

This toolbox contains re-implementations of four different multi-instance learners, i.e. Diverse Density, Citation-kNN, Iterated-discrim APR, and EM-DD. Ensembles of these single multi-instance learners can be built with this toolbox
(系统自动生成,下载前可以参看下载内容)

下载文件列表

MIL-Ensemble

............\Data Preparation

............\................\10-fold cross-validation

............\................\........................\divide_10fold_Musk1.m

............\................\........................\divide_10fold_Musk2.m

............\................\musk data from UCI ML Repository

............\................\................................\clean1.data

............\................\................................\...........\clean1.data

............\................\................................\clean1.data.Z

............\................\................................\clean1.info

............\................\................................\clean1.names

............\................\................................\clean2.data

............\................\................................\...........\clean2.data

............\................\................................\clean2.data.Z

............\................\................................\clean2.info

............\................\................................\clean2.names

............\................\................................\Index

............\................\Preprocessed data

............\................\.................\Musk1

............\................\.................\.....\all.txt

............\................\.................\.....\molecule_num.TXT

............\................\.................\Musk2

............\................\.................\.....\all.txt

............\................\.................\.....\molecule_num.TXT

............\Ensemble Algorithm

............\..................\APR

............\..................\...\Bagging_APR_Musk1.m

............\..................\...\Bagging_APR_Musk2.m

............\..................\auxiliary function

............\..................\..................\copy.m

............\..................\C-kNN

............\..................\.....\Bagging_C_kNN_Musk1.m

............\..................\.....\Bagging_C_kNN_Musk2.m

............\..................\Diverse Density

............\..................\...............\Bagging_DD_Musk1.m

............\..................\...............\Bagging_DD_Musk2.m

............\..................\EM-DD

............\..................\.....\Bagging_EMDD_Musk1.m

............\..................\.....\Bagging_EMDD_Musk2.m

............\Individual Algorithm

............\....................\Citation KNN

............\....................\............\CKNN.m

............\....................\............\minHausdorff.m

............\....................\Diverse Density

............\....................\...............\dfpmin.m

............\....................\...............\DInstance.m

............\....................\...............\DNBag.m

............\....................\...............\DPBag.m

............\....................\...............\D_neg_log_DD.m

............\....................\...............\lnsrch.m

............\....................\...............\maxDD.m

............\....................\...............\neg_log_DD.m

............\....................\...............\PInstance.m

............\....................\...............\PNBag.m

............\....................\...............\PPBag.m

............\....................\EM-DD

............\....................\.....\EMDD.m

............\....................\.....\NLDD.m

............\....................\IDAPR

............\....................\.....\Discrim.m

............\....................\.....\Expand.m

............\....................\.....\Grow.m

............\....................\.....\IDAPR.m

............\readme.txt

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org