文件名称:immunity
介绍说明--下载内容均来自于网络,请自行研究使用
提供一个人工免疫算法源程序,其算法过程包括:
1.设置各参数
2.随机产生初始群体——pop=initpop(popsize,chromlength)
3.故障类型编码,每一行为一种!code(1,:),正常;code(2,:),50%;code(3,:),150%。实际故障测得数据编码,这里Unnoralcode,188%
4.开始迭代(M次):
1)计算目标函数值:欧氏距离[objvalue]=calobjvalue(pop,i)
2)计算群体中每个个体的适应度fitvalue=calfitvalue(objvalue)
3)选择newpop=selection(pop,fitvalue) objvalue=calobjvalue(newpop,i) %
交叉newpop=crossover(newpop,pc,k) objvalue=calobjvalue(newpop,i) %
变异newpop=mutation(newpop,pm) objvalue=calobjvalue(newpop,i) %
5.求出群体中适应值最大的个体及其适应值
6.迭代停止判断。-provide a source of artificial immune algorithm, the algorithm process include : 1. Two of the parameters set. Initial randomly generated groups -- pop = initpop (popsize, chromlength) 3. Fault type coding, each act a! Code (1 :), normal; Code (2, :), 50%; Code (3 :), 150%. Fault actual measured data coding, here Unnoralcode, 188% 4. Beginning iteration (M) : 1) the objective function value : Euclidean distance [objvalue] = calobjvalue (pop, i) 2) calculation of each individual groups of fitness calfitvalue fitvalue = ( objvalue) 3) = newpop choice selection (pop, fitvalue) objvalue = calobjvalue (newpop, i) =% newpop cross-crossover (newpop, pc, k) = calobjvalue objvalue (newpop, i) =% variation newpop mutation (newpop, pm ) objvalue = calobjvalue (newpop, i)% 5. groups sought to adapt th
1.设置各参数
2.随机产生初始群体——pop=initpop(popsize,chromlength)
3.故障类型编码,每一行为一种!code(1,:),正常;code(2,:),50%;code(3,:),150%。实际故障测得数据编码,这里Unnoralcode,188%
4.开始迭代(M次):
1)计算目标函数值:欧氏距离[objvalue]=calobjvalue(pop,i)
2)计算群体中每个个体的适应度fitvalue=calfitvalue(objvalue)
3)选择newpop=selection(pop,fitvalue) objvalue=calobjvalue(newpop,i) %
交叉newpop=crossover(newpop,pc,k) objvalue=calobjvalue(newpop,i) %
变异newpop=mutation(newpop,pm) objvalue=calobjvalue(newpop,i) %
5.求出群体中适应值最大的个体及其适应值
6.迭代停止判断。-provide a source of artificial immune algorithm, the algorithm process include : 1. Two of the parameters set. Initial randomly generated groups -- pop = initpop (popsize, chromlength) 3. Fault type coding, each act a! Code (1 :), normal; Code (2, :), 50%; Code (3 :), 150%. Fault actual measured data coding, here Unnoralcode, 188% 4. Beginning iteration (M) : 1) the objective function value : Euclidean distance [objvalue] = calobjvalue (pop, i) 2) calculation of each individual groups of fitness calfitvalue fitvalue = ( objvalue) 3) = newpop choice selection (pop, fitvalue) objvalue = calobjvalue (newpop, i) =% newpop cross-crossover (newpop, pc, k) = calobjvalue objvalue (newpop, i) =% variation newpop mutation (newpop, pm ) objvalue = calobjvalue (newpop, i)% 5. groups sought to adapt th
(系统自动生成,下载前可以参看下载内容)
下载文件列表
压缩包 : 67506266immunity.rar 列表 immunity\best.m immunity\calfitvalue.m immunity\calobjvalue.m immunity\code.txt immunity\crossover.m immunity\decodebinary.m immunity\decodechrom.m immunity\hjjsort.m immunity\initpop.asv immunity\initpop.m immunity\main.m immunity\mutation.m immunity\readme.txt immunity\resultselect.m immunity\selection.m immunity