文件名称:immunity
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 9kb
- 下载次数:
- 0次
- 提 供 者:
- 江*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
提供一个人工免疫算法源程序,其算法过程包括:
1.设置各参数
2.随机产生初始群体——pop=initpop(popsize,chromlength)
3.故障类型编码,每一行为一种!code(1,:),正常;code(2,:),50%;code(3,:),150%。实际故障测得数据编码,这里Unnoralcode,188%
4.开始迭代(M次):
1)计算目标函数值:欧氏距离[objvalue]=calobjvalue(pop,i)
2)计算群体中每个个体的适应度fitvalue=calfitvalue(objvalue)
3)选择newpop=selection(pop,fitvalue) objvalue=calobjvalue(newpop,i) %
交叉newpop=crossover(newpop,pc,k) objvalue=calobjvalue(newpop,i) %
变异newpop=mutation(newpop,pm) objvalue=calobjvalue(newpop,i) %
5.求出群体中适应值最大的个体及其适应值
6.迭代停止判断。-provide a source of artificial immune algorithm, the algorithm process include : 1. Two of the parameters set. Initial randomly generated groups-- pop = initpop (popsize, chromlength) 3. Fault type coding, each act a! Code (1 :), normal; Code (2, :), 50%; Code (3 :), 150%. Fault actual measured data coding, here Unnoralcode, 188% 4. Beginning iteration (M) : 1) the objective function value : Euclidean distance [objvalue] = calobjvalue (pop, i) 2) calculation of each individual groups of fitness calfitvalue fitvalue = ( objvalue) 3) = newpop choice selection (pop, fitvalue) objvalue = calobjvalue (newpop, i) =% newpop cross-crossover (newpop, pc, k) = calobjvalue objvalue (newpop, i) =% variation newpop mutation (newpop, pm ) objvalue = calobjvalue (newpop, i)% 5. groups sought to adapt th
1.设置各参数
2.随机产生初始群体——pop=initpop(popsize,chromlength)
3.故障类型编码,每一行为一种!code(1,:),正常;code(2,:),50%;code(3,:),150%。实际故障测得数据编码,这里Unnoralcode,188%
4.开始迭代(M次):
1)计算目标函数值:欧氏距离[objvalue]=calobjvalue(pop,i)
2)计算群体中每个个体的适应度fitvalue=calfitvalue(objvalue)
3)选择newpop=selection(pop,fitvalue) objvalue=calobjvalue(newpop,i) %
交叉newpop=crossover(newpop,pc,k) objvalue=calobjvalue(newpop,i) %
变异newpop=mutation(newpop,pm) objvalue=calobjvalue(newpop,i) %
5.求出群体中适应值最大的个体及其适应值
6.迭代停止判断。-provide a source of artificial immune algorithm, the algorithm process include : 1. Two of the parameters set. Initial randomly generated groups-- pop = initpop (popsize, chromlength) 3. Fault type coding, each act a! Code (1 :), normal; Code (2, :), 50%; Code (3 :), 150%. Fault actual measured data coding, here Unnoralcode, 188% 4. Beginning iteration (M) : 1) the objective function value : Euclidean distance [objvalue] = calobjvalue (pop, i) 2) calculation of each individual groups of fitness calfitvalue fitvalue = ( objvalue) 3) = newpop choice selection (pop, fitvalue) objvalue = calobjvalue (newpop, i) =% newpop cross-crossover (newpop, pc, k) = calobjvalue objvalue (newpop, i) =% variation newpop mutation (newpop, pm ) objvalue = calobjvalue (newpop, i)% 5. groups sought to adapt th
(系统自动生成,下载前可以参看下载内容)
下载文件列表
immunity
........\best.m
........\calfitvalue.m
........\calobjvalue.m
........\code.txt
........\crossover.m
........\decodebinary.m
........\decodechrom.m
........\hjjsort.m
........\initpop.asv
........\initpop.m
........\main.m
........\mutation.m
........\readme.txt
........\resultselect.m
........\selection.m
........\best.m
........\calfitvalue.m
........\calobjvalue.m
........\code.txt
........\crossover.m
........\decodebinary.m
........\decodechrom.m
........\hjjsort.m
........\initpop.asv
........\initpop.m
........\main.m
........\mutation.m
........\readme.txt
........\resultselect.m
........\selection.m