搜索资源列表
BPBPzui
- 通过在MATLAB平台上比较BP神经网络的三种训练方法-trainbr traingdm trainlm.并且网络中加入噪音!-through MATLAB platform comparison BP neural network training method for the three-trainbr traingdm trainlm. Network and add noise!
11
- L-M优化算法(trainlm)和贝叶斯正则化算法(trainbr)
BPBPzui
- 通过在MATLAB平台上比较BP神经网络的三种训练方法-trainbr traingdm trainlm.并且网络中加入噪音!-through MATLAB platform comparison BP neural network training method for the three-trainbr traingdm trainlm. Network and add noise!
11
- L-M优化算法(trainlm)和贝叶斯正则化算法(trainbr)-LM optimization algorithm (trainlm) and Bayesian regularization algorithm (trainbr)
bp.example
- 采用动量梯度下降算法训练BP网络,采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络-Gradient descent algorithm using momentum BP network training, using two training methods, namely, LM optimization algorithm (trainlm) and Bayesi
bys
- 采用贝叶斯正则化算法提高BP网络的推广能力。在本例中,将采用两种训练方法,即L-M优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP网络,使其能够拟合某一附加有白噪声的正弦样本数据。-The use of Bayesian regularization algorithm for BP network to improve generalization ability. In this case, two ty
trainlm
- 采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr)-Using two training methods, namely, LM optimization algorithm (trainlm) and Bayesian regularization algorithm (trainbr)
Example4
- 采用贝叶斯正则化算法(抑制过拟合)提高 BP 网络的推广能力,采用两种训练方法, 即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络;-Bayesian regularization algorithm (inhibition of over-fitting) to improve the generalization ability of BP network, using two
Bayes-in-BP(code)
- 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正 则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。-Use Bayes to train BP network
Bayesian-regularization
- 贝叶斯正则化算法提高 BP 网络,L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络-Bayesian regularization algorithm to improve BP network
bp2
- 采用贝叶斯正则化算法提高 BP 网络的推广能力。 在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。-Bayesian regularization algorithm to improve the generalization ability of BP network. In this example, w
bpNeural-network-instance
- 例1 采用动量梯度下降算法训练 BP 网络。 例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。-Example 1 uses the momentum gradient descent algorithm to train the BP network.
BP
- BP神经网络的主程序,已经调试成功。其中传递函数可以自己随意选用,sigmoid,pureline等函数。训练函数也可以自己设置,trainlm,trainbr等等(Back propagation neural network.)