文件名称:bpNeural-network-instance
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
例1 采用动量梯度下降算法训练 BP 网络。
例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。-Example 1 uses the momentum gradient descent algorithm to train the BP network.
Example 2 uses the Bayesian regularization algorithm to improve the generalization ability of BP network. In this example, we use two training methods, the LM optimization algorithm (trainlm) and the Bayesian regularization algorithm (trainbr), to train the BP network to fit a sine sample with white noise data.
例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。-Example 1 uses the momentum gradient descent algorithm to train the BP network.
Example 2 uses the Bayesian regularization algorithm to improve the generalization ability of BP network. In this example, we use two training methods, the LM optimization algorithm (trainlm) and the Bayesian regularization algorithm (trainbr), to train the BP network to fit a sine sample with white noise data.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
bp1.doc
bp神经网络实例.txt
ann.m