搜索资源列表
rbf_mems
- 为了提高使用精度,研究了某型号MEMS陀螺仪的随机漂移模型。采用游程检验法分析了 该陀螺仪随机漂移数据的平稳性,并根据该漂移为均值非平稳、方差平稳的随机过程的结论, 采用梯度径向基(RBF)神经网络对漂移数据进行了建模。实验结果表明:相比经典RBF网络模 型而言,这种方法建立的模型能更好地描述MEMS陀螺仪的漂移特;相对于季节时间序列模型而 言,其补偿效果提高了大约15%。
RBF
- 文中设计了一个3层径向基神经网络(RBFN)用于对企业的5项评价指标进行聚类分析,并与蚁群算法做了比较分析。RBFN由输入层 到隐含层采用传统的K一均值算法,隐含层到输出层通过“模2递减”学习速率的BP学习;蚁群算法根据信息素的分配能够自动调整收索 路径,从而达到数据自动聚类的目的。结果表明,与蚁群算法相比,改进RBFN具有快速收敛、自动识别奇异样本的优点,而蚁群算法 无须教师学习,并能够达到全局最优。
NetToolkit
- 1、该工具包用于安装Lm和RBF两个神经网络工具包 2、直接运行LmNet.exe或_install.bat即可; 3、完成成功后,请将 bin\\win32 目前加至系统的 path中。 具体为:我的电脑-->属性-->环境变量-->将“bin\\win32”加至path路径中。-1, the tool kits for the installation and Lm 2 RBF neural network too
NetToolkit
- 1、该工具包用于安装Lm和RBF两个神经网络工具包 2、直接运行LmNet.exe或_install.bat即可; 3、完成成功后,请将 bin\win32 目前加至系统的 path中。 具体为:我的电脑-->属性-->环境变量-->将“bin\win32”加至path路径中。-1, the tool kits for the installation and Lm 2 RBF neural network tool
rbf_mems
- 为了提高使用精度,研究了某型号MEMS陀螺仪的随机漂移模型。采用游程检验法分析了 该陀螺仪随机漂移数据的平稳性,并根据该漂移为均值非平稳、方差平稳的随机过程的结论, 采用梯度径向基(RBF)神经网络对漂移数据进行了建模。实验结果表明:相比经典RBF网络模 型而言,这种方法建立的模型能更好地描述MEMS陀螺仪的漂移特;相对于季节时间序列模型而 言,其补偿效果提高了大约15%。-In order to improve acc
RBF
- 文中设计了一个3层径向基神经网络(RBFN)用于对企业的5项评价指标进行聚类分析,并与蚁群算法做了比较分析。RBFN由输入层 到隐含层采用传统的K一均值算法,隐含层到输出层通过“模2递减”学习速率的BP学习;蚁群算法根据信息素的分配能够自动调整收索 路径,从而达到数据自动聚类的目的。结果表明,与蚁群算法相比,改进RBFN具有快速收敛、自动识别奇异样本的优点,而蚁群算法 无须教师学习,并能够达到全局最优。-In this pa
nn
- 线性神经网络,BP神经网络,Hopfield神经网格,Elman神经网络,RBF神经网络;在模型应用模块中实现了六种实际应用:RBF网络的船用柴油机故障诊断,BP网络的齿轮箱故障诊断,SOM网络的回热系统故障诊断,BP网络的设备状态分类器,SOM网络的人口比例样本分类,SOM网络的土壤性状样本分类。-Linear neural network, BP neural network, Hopfield neural network, El
read2
- 能够快速地实现txt中的汉字和数字的读取,并附有简单的画图实例;另有rbf神经网络预测源代码-Txt quickly realized characters and numbers in the reading, along with simple drawing examples otherwise rbf neural network source code
30-case-studies
- MATLAB神经网络30个案例分析__读者调用案例的时候,只要把案例中的数据换成自己需要处理的数据,即可实现自己想要的网络。该书共有30个MATLAB神经网络的案例(含可运行程序),包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络;还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等内容。-30 case studies of the MATLAB Neural Networ
MATLAB-Neural-network-cases
- 共有30个MATLAB神经网络的案例(含可运行程序),包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络;还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等内容。-Neural network cases
GA_RBF
- GA,即遗传算法;RBF,径向基函数神经网络。本程序介绍了通过遗传算法来优化RBF神经网络的参数值,从而达到更好的进行模式识别。-GA, namely genetic algorithms RBF, radial basis function neural networks. This procedure describes the parameters to optimize the RBF neural networks by g
11
- RBF网络的学习过程与BP网络的学习过程类似,两者的主要区别在于各使用不同的作用函数。BP网络中隐层使用的是Sigmoid函数,其值在输入空间中无限大的范围内为非零值,因而是一种全局逼近的神经网络;而RBF网络中的作用函数是高斯基函数,其值在输入空间中有限范围内为非零值,因为RBF网络是局部逼近的神经网络。 RBF网络是一种3层前向网络,由输入到输出的映射是非线性的,而隐层空间到输出空间的映射是线性的,而且RBF网络局部逼近的神经
DVMS_V4.0
- rbf神经网络例代码,供参考, RBF网络的结构与多层前向网络类似,它是一种三层前向网络。输入层由信号源结点组成;第二层为隐含层,隐单元数视所描述问题的需要而定,隐单元的变换函数是RBF径向基函数-RBF neural network example code, for your reference
RBF_Control
- RBF神经网络控制器,梯度下降更新算法;(RBF neural controller)
第10章 模糊逼近算法
- RBF网络的学习过程与BP网络的学习过程类似,两者的主要区别在于各使用不同的作用函数。BP网络中隐层使用的是Sigmoid函数,其值在输入空间中无限大的范围内为非零值,因而是一种全局逼近的神经网络;而RBF网络中的作用函数是高斯基函数,其值在输入空间中有限范围内为非零值,因为RBF网络是局部逼近的神经网络。(The learning process of RBF networks is similar to the learning p
PNN网络代码
- 概率神经网络(Probabilistic Neural Network)是由D.F.Speeht博士在1989年首先提出,是径向基网络的一个分支,属于前馈网络的一种。它具有如下优点:学习过程简单、训练速度快;分类更准确,容错性好等。从本质上说,它属于一种有监督的网络分类器,基于贝叶斯最小风险准则。(Probabilistic neural network was first proposed by Dr. D.F.Speeht in 1
MATAB神经网络30个案例分析
- 该PDF共有30个MATLAB神经网络的案例,包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络;还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等内容。本PDF作为本科毕业设计、研究生项日设计、博士低年级课题设计参考书籍,同时对广大科研人员也有很高的参考价值。(The PDF has a total of 30 MATLAB in the case of neural ne
案例7
- RBF神经网络的回归,实例为非线性函数拟合。(RBF neural network regression, nonlinear function fitting)
人工神经网络与应用21个案例汇总
- 案例程序分析,用于神经网络编程参考;对人工神经初学者编程起指导作用(Case program analysis for neural network programming reference;The guiding role of programming for the beginners of artificial nerve)
BP神经网络股票预测
- 在600085这个数据表中,以XZSLX综合作为输入,以收盘价作为输出 以前595个数据作为训练样本,后100个数据作为实际输出。 通过训练数据建立模型,最终输出100个预测的股票收盘价。 将预测的收盘价和实际的收盘价进行对比并求取误差,从而判断所建立模型的准确性。 RBF神经网络调用newff函数实现。(In the data table of 600085, XZSLX synthesis is used as input and