搜索资源列表
kNN
- 针对MNIST数据库,但修改方便,可用于其他数字识别
kNN
- 针对MNIST数据库,但修改方便,可用于其他数字识别-For MNIST database, but modified to facilitate, can be used for other digital identification
123214324325325435
- 利用神经网络算法识别手写体文字的工程,工程的例子图像为MNIST DATABASE数据库中的图像-Use of neural network algorithm handwritten text recognition works, examples of images in the database image MNIST DATABASE
Database-digit-handwritten
- 手写体数字识别的训练数据库(MNIST)。 收集了500多位实验者的共60000个样本。-THE MNIST DATABASE of handwritten digits Four files are available on this site: train-images-idx3-ubyte.gz: training set images (9912422 bytes) train-labels-idx1
main
- 利用opencv识别手写数字的分类,并识别,利用了mnist数据库-Using opencv recognize handwritten digits classification and identification, the use of mnist database
mnist
- mnist手写体数据库,适合用于做手写数字方面的实验-mnist handwritten database suitable for doing experimental aspects of handwritten digits
Release
- 闲时无聊,搭了一个基于深度神经网络的手写数字识别系统。该系统在手写数字数据库mnist测试达到了99.22 的准确率。整个系统基于C++开发,可以很方便的移植到其他平台。 其中手写数字数据库mnist(http://yann.lecun.com/exdb/mnist/),有60000个训练样本数据集和10000个测试用例。它是由Google实验室的Corinna Cortes和纽约大学柯朗研究所的Yann LeCun建立的一个
Handwritten-Character
- 基于CNNs的手写字符识别系统,载入MNIST手写字符数据库,通过训练提取特征,达到99 的识别率-Based on CNNs handwritten character recognition system, load MNIST handwritten character database, extract features through training, up to 99 recognition rate
readMNIST
- 对于MNIST图像数据库,利用该M文件读出,方便后续进行实验。-The function ReadMnist was programmed to solve the problem of read information the MNIST .
KNN
- KNN算法练习,使用mnist数据库,在包里已经集成好,包含knn算法和数据库,可直接使用-KNN,you can learn this codes
Softmax_exercise
- Softmax用于多分类问题,本例是将MNIST手写数字数据库中的数据0-9十个数字进行分类,其中训练样本有6万个,测试样本有1万个数字是0~9-Softmax for multi classification problems, the present case is the handwritten data MNIST digital 0-9, classification, training samples which have
medrankDB
- 基于mnist数据库,对其用C++实现b+树索引和medrank搜索。data需要到mnist网站下下载-Based mnist , search for them using C++ achieve b+ tree indexes and medrank. data need to download website under mnist
Handwriten
- 用java编写的手写体数字识别,采用knn方法,识别的训练和测试对象来自mnist数据库的数据,已经将解压后文件放进去了,算法包括文件的读取,测试部分还有识别算法。 -Written by java handwriting digital recognition, using knn method to identify the training and test objects the mnist data, has been e
readMNIST
- 用ELM实现手写数字的识别,快速,用MNIST数据库(Handwritten numbers recognition realized by ELM)
mnist
- mnist数据库通过整理下载后压缩到mnist,zip,适用于mnist自己调试解决自己的(The MNIST database is compacted and downloaded to MNIST, zip, suitable for MNIST itself to debug and solve its own)
Extended Yale B Database
- 这是MNIST数据库(一个手写数字的数据库,它提供了六万的训练集和一万的测试集,它的图片是被规范处理过的,28*28的灰度图) 总共4个文件: train-labels-idx1-ubyte: training set labels t10k-images-idx3-ubyte:? test set images t10k-labels-idx1-ubyte:? test set labels train-images-idx
rasmusbergpalm-DeepLearnToolbox-5df2801
- mnist数据库,可用matlab运行,学习神经网络(MNIST database can be run by MATLAB, learning neural network.)