文件名称:Softmax_exercise
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2016-10-30
- 文件大小:
- 10.24mb
- 下载次数:
- 0次
- 提 供 者:
- 安*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
Softmax用于多分类问题,本例是将MNIST手写数字数据库中的数据0-9十个数字进行分类,其中训练样本有6万个,测试样本有1万个数字是0~9-Softmax for multi classification problems, the present case is the handwritten data MNIST digital 0-9, classification, training samples which have 60,000, there are 10,000 test samples digit 0 to 9
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Softmax_exercise\computeNumericalGradient.m
................\loadMNISTImages.m
................\loadMNISTLabels.m
................\minFunc\ArmijoBacktrack.m
................\.......\autoGrad.m
................\.......\autoHess.m
................\.......\autoHv.m
................\.......\autoTensor.m
................\.......\callOutput.m
................\.......\conjGrad.m
................\.......\dampedUpdate.m
................\.......\example_minFunc.m
................\.......\example_minFunc_LR.m
................\.......\isLegal.m
................\.......\lbfgs.m
................\.......\lbfgsC.c
................\.......\lbfgsC.mexa64
................\.......\lbfgsC.mexglx
................\.......\lbfgsC.mexmac
................\.......\lbfgsC.mexmaci
................\.......\lbfgsC.mexmaci64
................\.......\lbfgsC.mexw32
................\.......\lbfgsC.mexw64
................\.......\lbfgsUpdate.m
................\.......\.ogistic\LogisticDiagPrecond.m
................\.......\........\LogisticHv.m
................\.......\........\LogisticLoss.m
................\.......\........\mexutil.c
................\.......\........\mexutil.h
................\.......\........\mylogsumexp.m
................\.......\........\repmatC.c
................\.......\........\repmatC.dll
................\.......\........\repmatC.mexglx
................\.......\........\repmatC.mexmac
................\.......\mchol.m
................\.......\mcholC.c
................\.......\mcholC.mexmaci64
................\.......\mcholC.mexw32
................\.......\mcholC.mexw64
................\.......\mcholinc.m
................\.......\minFunc.m
................\.......\minFunc_processInputOptions.m
................\.......\polyinterp.m
................\.......\precondDiag.m
................\.......\precondTriu.m
................\.......\precondTriuDiag.m
................\.......\rosenbrock.m
................\.......\taylorModel.m
................\.......\WolfeLineSearch.m
................\softmaxCost.m
................\softmaxExercise.m
................\softmaxPredict.m
................\softmaxTrain.m
................\t10k-images.idx3-ubyte
................\t10k-labels.idx1-ubyte
................\train-images.idx3-ubyte
................\train-labels.idx1-ubyte
................\minFunc\logistic
................\minFunc
Softmax_exercise