搜索资源列表
DEELMNN
- 利用差分演化优化极限学习机神经网络的matlab源代码,涉及2个matlab程序-evolutionary extreme learning machine, differential evolution
FOA-ELM
- 算法思想是:1) 根据果蝇优化算法得到极速学习机隐层神经元的数目;2) 依据得到的隐层神经元数目和极限学习机的方法对训练样本和测试样本进行训练学习。只要打开fruitfly_elm.m文件运行即可,可以换数据集 -Algorithm idea is: 1) according to the number of flies speed machine learning algorithm to obtain the hidden laye
DE_OS-ELM
- 用差分算法对在线惯序极限学习机的输入权值和偏置进行优化(本程序只限激励函数为sig),其学习时间比极限学习机分批进行学习总共的时间有所提升,诊断精度也提高了。-Algorithm using differential input weights and the bias line Extreme Learning Machine sequencer used to optimize (this program only excitati
oo-ELM
- 优化的基线学习机,收敛速度快,可用于分类和拟合-The baseline learning machine optimization, fast convergence speed, and can be used for classification and curve fitting
改进人工蜂群算法优化ELM分类模型_赵虎
- 经典的粗糙算法集代码,内有实例。主要用来数据约减,数据分类,优化(Classic rough sets of code, there are examples)
NSGA2-ELM
- 以NSGA2算法作为学习算法优化ELM神经网络的权值,满足误差小、权值范围小的双目标(NSGA2 algorithm is used as a learning algorithm to optimize the weights of ELM neural network, and it meets the double objective with small error and small weight range)
PSO_ELM
- 运用粒子群算法对ELM算法进行优化,以达到算法的最优性。(Particle swarm optimization (PSO) is applied to optimize the ELM algorithm to achieve the optimality of the algorithm.)
BA_ELM
- 蝙蝠优化的极限学习机,提升极限学习机的效率(BA-ELM to improve effection of ELM)
粒子群优化
- 基于粒子群优化算法的ELM,很稳,自己写的亲测可用(ELM based on particle swarm optimization algorithm)
FOA-ELM
- FOA-ELM FOA算法优化极限学习机的MATLAB代码(FOA-ELM FOA algorithm to optimize MATLAB code for extreme learning machine)
GA-ELM
- 遗传算法优化的极限学习机模型 采用水仙花基本特征数据集 效果比单纯的ELM模型要好(The effect of using daffodils basic feature data set in the extreme learning machine model optimized by genetic algorithm is better than that of ELM model only.)
粒子群算法优化极限学习机PSO_ELM
- PSO粒子群算法优化极限学习机ELM参数,即PSO-ELM(The PSO particle swarm optimization algorithm is used to optimize the extreme learning machine ELM, ie pso-elm)
BA_ELM蝙蝠算法
- 蝙蝠算法优化ELM,是一种比较新的优化算法,希望可以借鉴下(Bat algorithm optimization elm)
anfis-elm-pso-master
- matlab。优化PSOELM算法源码,粒子群优化算法极限学习机(The matlab. Optimal PSOELM algorithm source code, the particle swarm optimization algorithm is extreme learning machine)
免疫+ELM 回归
- 用免疫算法优化ELM的输入层到隐藏层的权值与阈值参数,以此来提高ELM的预测精度。(Optimizing ELM parameters with immune algorithms)
全局群智能优化算法改进ELM
- 利用全局优化算法改进群智能算法从而改进ELM(Global group intelligence optimization algorithm improves ELM)
PSO-ELM
- PSO-ELM 粒子群算法优化极限学习机(PSO-ELM Particle swarm optimization for extreme learning machine)
ELM_PSO-master
- 为了提升配网供电可靠性的预测精度!提出了基于主成分分析和粒子群优化极限学习机的配网供电可靠 性预测模型$ 从多方面分析影响供电可靠性的指标!利用主成分分析得到综合变量!实现对数据的降维$ 在此基 础上!构建人工神经网络并利用粒子群算法优化极限学习机的输入权值和阈值!完成对训练供电可靠性预测模型 的训练$ 以某大型电网的 ?L 个供电局样本 !% 种影响供电可靠性因素为例进行仿真分析!并将 E S R C E FQ C 4 G D算
pso-elm
- 极限学习机,单隐层前馈神经网络,算法源程序。(Extreme learning machine, single hidden layer feedforward neural network, algorithm source code.)
基于PCA+PSO-ELM的工程费用估计
- 利用主成分分析法结合粒子群(PSO)优化极限学习机(ELM)进行工程费用估计预测(In this paper, principal component analysis (PCA) combined with particle swarm optimization (PSO) optimization extreme learning machine (ELM) is used to estimate and forecast engi