文件名称:ELM_PSO-master
介绍说明--下载内容均来自于网络,请自行研究使用
为了提升配网供电可靠性的预测精度!提出了基于主成分分析和粒子群优化极限学习机的配网供电可靠
性预测模型$ 从多方面分析影响供电可靠性的指标!利用主成分分析得到综合变量!实现对数据的降维$ 在此基
础上!构建人工神经网络并利用粒子群算法优化极限学习机的输入权值和阈值!完成对训练供电可靠性预测模型
的训练$ 以某大型电网的 ?L 个供电局样本 !% 种影响供电可靠性因素为例进行仿真分析!并将 E S R C E FQ C 4 G D算
法与 ! 种回归拟合算法对比!验证了该方法的有效性(It is clear that the learning speed of feedforward neural networks is in general far slower than required and it has been a major bottleneck in their applications for past decades. Two key reasons behind may be: (1) the slow gradient-based learning algorithms are extensively used to train neural networks, and (2) all the parameters of the networks are tuned iteratively by using such learning algorithms. Unlike these conventional implementations, this paper proposes a new learning algorithm called extreme learning machine (ELM) for single-hidden layer feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide good generalization performance at extremely fast learning speed. The experimental results based on a few artificial and real benchmark function approximation and classification problems including very large complex applications show that the new algorithm can p)
性预测模型$ 从多方面分析影响供电可靠性的指标!利用主成分分析得到综合变量!实现对数据的降维$ 在此基
础上!构建人工神经网络并利用粒子群算法优化极限学习机的输入权值和阈值!完成对训练供电可靠性预测模型
的训练$ 以某大型电网的 ?L 个供电局样本 !% 种影响供电可靠性因素为例进行仿真分析!并将 E S R C E FQ C 4 G D算
法与 ! 种回归拟合算法对比!验证了该方法的有效性(It is clear that the learning speed of feedforward neural networks is in general far slower than required and it has been a major bottleneck in their applications for past decades. Two key reasons behind may be: (1) the slow gradient-based learning algorithms are extensively used to train neural networks, and (2) all the parameters of the networks are tuned iteratively by using such learning algorithms. Unlike these conventional implementations, this paper proposes a new learning algorithm called extreme learning machine (ELM) for single-hidden layer feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide good generalization performance at extremely fast learning speed. The experimental results based on a few artificial and real benchmark function approximation and classification problems including very large complex applications show that the new algorithm can p)
相关搜索: ELM
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
ELM_PSO-master | 0 | 2018-11-27 |
ELM_PSO-master\CPSO | 0 | 2018-11-27 |
ELM_PSO-master\CPSO\CPSO.py | 6683 | 2018-11-27 |
ELM_PSO-master\CPSO\Particula.py | 2040 | 2018-11-27 |
ELM_PSO-master\CPSO\SolveSystemFitness.py | 3410 | 2018-11-27 |
ELM_PSO-master\CPSO\__pycache__ | 0 | 2018-11-27 |
ELM_PSO-master\CPSO\__pycache__\CPSO.cpython-37.pyc | 4444 | 2018-11-27 |
ELM_PSO-master\CPSO\__pycache__\Particula.cpython-37.pyc | 2703 | 2018-11-27 |
ELM_PSO-master\CPSO\__pycache__\SolveSystemFitness.cpython-37.pyc | 4637 | 2018-11-27 |
ELM_PSO-master\Candle.py | 1073 | 2018-11-27 |
ELM_PSO-master\IO.py | 12284 | 2018-11-27 |
ELM_PSO-master\experimento_sem_open.py | 1653 | 2018-11-27 |
ELM_PSO-master\func_aux_pso.py | 6621 | 2018-11-27 |
ELM_PSO-master\func_auxiliares.py | 4184 | 2018-11-27 |
ELM_PSO-master\kelm.py | 1522 | 2018-11-27 |
ELM_PSO-master\main_ind.py | 2949 | 2018-11-27 |
ELM_PSO-master\main_semanal.py | 3168 | 2018-11-27 |
ELM_PSO-master\nova_main.py | 3422 | 2018-11-27 |
ELM_PSO-master\predicao_ind.py | 3203 | 2018-11-27 |