文件名称:hertt
介绍说明--下载内容均来自于网络,请自行研究使用
矩阵的最大特征值的幂法.
对于工程计算而言,矩阵的特征值和特征向量都是相当重要和常见的数据,这里给出的幂法是一种常见的求解方法,用的是迭代的思想。
符号说明:
1A为待求的矩阵,
2Uk,Vk为迭代用的列向量。
3最后的最大特征值maxLamda由最后一次的max(Uk)-----求Uk中的绝对值最大的元素的绝对值.所决定。
而maxLamda所对应的特征向量由最后一次迭代的Vk所决定.
主要的想法就是先选一个不为0的初始向量U0!=0,然后按下面的式子迭代。
-matrix eigenvalue of the largest power France. For engineering calculation, Matrix eigenvalues and eigenvectors are very important and common data, here is the power law is a common solution, using the iterative thinking. Symbol : 1A of the question for the matrix, 2Uk, Vk iteration of the column vector. The final three largest eigenvalue maxLamda from last max (uk Hoffmann for the uk the largest absolute value of the absolute value of the element. by decision. While maxLamda corresponding eigenvectors from the last iteration of Vk decision. The main idea was first choice not one of the initial vector 0 U0! = 0, then by the following formula iteration.
对于工程计算而言,矩阵的特征值和特征向量都是相当重要和常见的数据,这里给出的幂法是一种常见的求解方法,用的是迭代的思想。
符号说明:
1A为待求的矩阵,
2Uk,Vk为迭代用的列向量。
3最后的最大特征值maxLamda由最后一次的max(Uk)-----求Uk中的绝对值最大的元素的绝对值.所决定。
而maxLamda所对应的特征向量由最后一次迭代的Vk所决定.
主要的想法就是先选一个不为0的初始向量U0!=0,然后按下面的式子迭代。
-matrix eigenvalue of the largest power France. For engineering calculation, Matrix eigenvalues and eigenvectors are very important and common data, here is the power law is a common solution, using the iterative thinking. Symbol : 1A of the question for the matrix, 2Uk, Vk iteration of the column vector. The final three largest eigenvalue maxLamda from last max (uk Hoffmann for the uk the largest absolute value of the absolute value of the element. by decision. While maxLamda corresponding eigenvectors from the last iteration of Vk decision. The main idea was first choice not one of the initial vector 0 U0! = 0, then by the following formula iteration.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
压缩包 : 69491746hertt.rar 列表 高斯消去法求解方程组.doc