文件名称:pipei
介绍说明--下载内容均来自于网络,请自行研究使用
求二分图最大匹配可以用最大流或者匈牙利算法。
最大匹配 给定一个二分图G,在G的一个子图M中,M的边集中的任意两条边都不依附于同一个顶点,则称M是一个匹配. 选择这样的边数最大的子集称为图的最大匹配问题 如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配。(For maximum matching of two partite graphs, maximum flow or Hungarian algorithm can be used.
The maximum match is given a two partite graph G. In a subgraph M of G, any two edges of the edge of the M are not attached to the same vertex, then it is called a match. The subset of the largest number of the edges of the graph is called the maximum matching problem of the graph if each vertex in the graph is associated with a certain edge in the graph. This match is called complete matching, also known as complete matching.)
最大匹配 给定一个二分图G,在G的一个子图M中,M的边集中的任意两条边都不依附于同一个顶点,则称M是一个匹配. 选择这样的边数最大的子集称为图的最大匹配问题 如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配。(For maximum matching of two partite graphs, maximum flow or Hungarian algorithm can be used.
The maximum match is given a two partite graph G. In a subgraph M of G, any two edges of the edge of the M are not attached to the same vertex, then it is called a match. The subset of the largest number of the edges of the graph is called the maximum matching problem of the graph if each vertex in the graph is associated with a certain edge in the graph. This match is called complete matching, also known as complete matching.)
相关搜索: 图论;二部图;最大匹配问题
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
Pipei.m | 1715 | 2018-06-06 |
zjfs.m | 1446 | 2018-06-06 |