文件名称:GMRF
介绍说明--下载内容均来自于网络,请自行研究使用
马尔科夫随机场一般是离散的。当然也有连续的马尔可夫随机场,如果假设这个马尔可夫随机场定义在一个域U上面而且任意x∈U,Y(x)都是服从高斯分布的,而且两点间的covariance function K(x,y)=G(x,y),where G是对应U的格林函数,那么这个随机场既是马尔可夫随机场,也是高斯随机场。(The Markov random field is generally discrete. Of course there are continuous Markov random field, assuming that the Markov random field defined in a domain of U and above any X in U, Y (x) are subject to Gauss distribution, and between the two covariance function K (x, y) =G (x, y), where G is the corresponding Green function U, then this is a random field Markov random field, but also with the Gauss airport.)
相关搜索: 高斯马尔科夫随机场GMRF
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
GMRF | 0 | 2017-07-27 |
GMRF\GMRF | 0 | 2018-01-18 |
GMRF\GMRF\Gmrf_12.m | 190 | 2018-01-18 |
GMRF\GMRF\TestGMRF.m | 312 | 2017-07-27 |
GMRF\GMRF\X_GmrfPara_2Order_Estimat.m | 956 | 2015-10-26 |
GMRF\GMRF\X_GmrfPara_4Order_Estimat.m | 948 | 2015-10-26 |
GMRF\GMRF\X_GmrfPara_5Order_Estimat.m | 965 | 2017-07-27 |
GMRF\GMRF\X_Gmrf_ParaG.m | 2114 | 2015-10-26 |
GMRF\GMRF\main_GMRF.m | 1587 | 2017-10-18 |
GMRF\GMRF\texture.jpg | 111945 | 2009-03-16 |
GMRF\MRFFeature.rar | 104006 | 2015-10-26 |
GMRF\texture.jpg | 111945 | 2009-03-16 |