文件名称:libsvm-3.1-[FarutoUltimate3.1Mcode]

  • 所属分类:
  • 其他小程序
  • 资源属性:
  • [MacOS] [Matlab] [源码]
  • 上传时间:
  • 2017-10-19
  • 文件大小:
  • 1.16mb
  • 下载次数:
  • 0次
  • 提 供 者:
  • 莫言***
  • 相关连接:
  • 下载说明:
  • 别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容均来自于网络,请自行研究使用

态势要素获取作为整个网络安全态势感知的基础,其质量的好坏将直接影响态势感知系统的性能。针对态势要素不易获取问题,提出了一种基于增强型概率神经网络的层次化框架态势要素获取方法。在该层次化获取框架中,利用主成分分析(PCA)对训练样本属性进行约简并对特殊属性编码融合处理,将其结果用于优化概率神经网络(PNN)结构,降低系统复杂度。以PNN作为基分类器,基分类器通过反复迭代、权重更替,然后加权融合处理形成最终的强多分类器。实验结果表明,该方案是有效的态势要素获取方法并且精确度达到95.53%,明显优于文中其他算法,有较好的泛化能力。(As the basis of the whole network security situation awareness, the quality of situation elements extraction will directly affect the performance of the situation awareness system. To solve the problem that the situation element is difficult to extract, we propose a method to extract the hierarchical fr a me situation elements based on the enhanced probabilistic neural network. In the hierarchical access fr a me, we use the principal component analysis (PCA) to reduct the training sample attribute and to process the special attribute encoding fusion. The result can be used to optimize the structure of the probabilistic neural network (PNN) and reduce the system complexity. Take PNN as the base classifier to form the final strong classifier by repeated iteration, weight replacement and weighted fusion. The experimental results show that the scheme is an effective method to obtain the situation factors and its accuracy is 95.53%,which is significantly better than other algorithms.)
(系统自动生成,下载前可以参看下载内容)

下载文件列表

tools\checkdata.py

tools\easy.py

tools\grid.py

tools\README

tools\subset.py

windows\libsvm.dll

windows\libsvmread.mexw32

windows\libsvmread.mexw64

windows\libsvmwrite.mexw32

windows\libsvmwrite.mexw64

windows\svm-predict.exe

windows\svm-scale.exe

windows\svm-toy.exe

windows\svm-train.exe

windows\svmpredict.mexw32

windows\svmpredict.mexw64

windows\svmtrain.mexw32

windows\svmtrain.mexw64

svm.cpp.bak

svm-predict.c

svm-scale.c

svm-train.c

svm.h

svm.cpp

svm.def

FAQ.html

Makefile.win

COPYRIGHT

heart_scale

Makefile

README

java\libsvm\svm.java

java\libsvm\svm.m4

java\libsvm\svm_model.java

java\libsvm\svm_node.java

java\libsvm\svm_parameter.java

java\libsvm\svm_print_interface.java

java\libsvm\svm_problem.java

java\libsvm.jar

java\Makefile

java\svm_predict.java

java\svm_scale.java

java\svm_toy.java

java\svm_train.java

java\test_applet.html

matlab\heart_scale.mat

matlab\libsvmread.c

matlab\libsvmread.mexw32

matlab\libsvmwrite.c

matlab\libsvmwrite.mexw32

matlab\make.m

matlab\Makefile

matlab\README

matlab\svm.obj

matlab\svmpredict.c

matlab\svmpredict.mexw32

matlab\svmtrain.c

matlab\svmtrain.c.bak

matlab\svmtrain.mexw32

matlab\svm_model_matlab.c

matlab\svm_model_matlab.h

matlab\svm_model_matlab.obj

matlab-implement[by faruto]\a_template_flow_usingSVM_class.m

matlab-implement[by faruto]\a_template_flow_usingSVM_regress.m

matlab-implement[by faruto]\ClassResult.m

matlab-implement[by faruto]\ClassResult_test.m

matlab-implement[by faruto]\gaSVMcgForClass.m

matlab-implement[by faruto]\gaSVMcgForRegress.m

matlab-implement[by faruto]\gaSVMcgpForRegress.m

matlab-implement[by faruto]\libsvm参数说明.txt

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\bs2rv.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\contents.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\crtbase.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\crtbp.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\crtrp.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\migrate.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\mpga.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\mut.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\mutate.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\mutbga.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\mytest\gaSVM.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\ranking.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\recdis.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\recint.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\reclin.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\recmut.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\recombin.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\reins.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\rep.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\resplot.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\rws.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\scaling.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\select.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\sus.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovdp.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovdprs.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovmp.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovsh.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovshrs.m

matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovsp.m

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org