文件名称:MachineLearning-master

介绍说明--下载内容均来自于网络,请自行研究使用

机器学习算法,包括knn等,K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。(machine learning algorithm)
相关搜索: 人工智能

(系统自动生成,下载前可以参看下载内容)

下载文件列表

MachineLearning-master

MachineLearning-master\Adaboost

MachineLearning-master\Adaboost\README.md

MachineLearning-master\Adaboost\adaboost.py

MachineLearning-master\Adaboost\testAdaboost.py

MachineLearning-master\Decision-Tree

MachineLearning-master\Decision-Tree\README.md

MachineLearning-master\Decision-Tree\TestTree.py

MachineLearning-master\Decision-Tree\Tree.py

MachineLearning-master\DeepLearning

MachineLearning-master\DeepLearning\CNN_cifar-10

MachineLearning-master\DeepLearning\CNN_cifar-10\cifar.py

MachineLearning-master\DeepLearning\CNN_mnist

MachineLearning-master\DeepLearning\CNN_mnist\cnn.py

MachineLearning-master\DeepLearning\CNN_mnist\data.py

MachineLearning-master\DeepLearning\CNN_mnist\trainCNN.py

MachineLearning-master\DeepLearning\UFLDL

MachineLearning-master\DeepLearning\UFLDL\Vectorization_sparseae_exercise

MachineLearning-master\DeepLearning\UFLDL\Vectorization_sparseae_exercise\checkNumericalGradient.m

MachineLearning-master\DeepLearning\UFLDL\Vectorization_sparseae_exercise\computeNumericalGradient.m

MachineLearning-master\DeepLearning\UFLDL\Vectorization_sparseae_exercise\display_network.m

MachineLearning-master\DeepLearning\UFLDL\Vectorization_sparseae_exercise\initializeParameters.m

MachineLearning-master\DeepLearning\UFLDL\stl_exercise

MachineLearning-master\DeepLearning\UFLDL\stl_exercise\display_network.m

MachineLearning-master\DeepLearning\UFLDL\stl_exercise\feedForwardAutoencoder.m

MachineLearning-master\DeepLearning\UFLDL\stl_exercise\initializeParameters.m

MachineLearning-master\DeepLearning\UFLDL\stl_exercise\loadMNISTImages.m

MachineLearning-master\DeepLearning\UFLDL\stl_exercise\loadMNISTLabels.m

MachineLearning-master\DeepLearning\UFLDL\stl_exercise\softmaxCost.m

MachineLearning-master\DeepLearning\UFLDL\stl_exercise\softmaxPredict.m

MachineLearning-master\DeepLearning\UFLDL\stl_exercise\softmaxTrain.m

MachineLearning-master\DeepLearning\UFLDL\stl_exercise\sparseAutoencoderCost.m

MachineLearning-master\DeepLearning\UFLDL\stl_exercise\stlExercise.m

MachineLearning-master\GMM

MachineLearning-master\GMM\README.md

MachineLearning-master\GMM\gmm.m

MachineLearning-master\GMM\gmm.py

MachineLearning-master\GMM\testGMM.m

MachineLearning-master\GMM\testSet.txt

MachineLearning-master\KNN

MachineLearning-master\KNN\KNN.m

MachineLearning-master\KNN\KNN.py

MachineLearning-master\KNN\KNNdatgingTest.m

MachineLearning-master\KNN\README.md

MachineLearning-master\KNN\datingTestSet2.txt

MachineLearning-master\KNN\handWritingTest.m

MachineLearning-master\Kmeans

MachineLearning-master\Kmeans\README.md

MachineLearning-master\Kmeans\distEclud.m

MachineLearning-master\Kmeans\kMeans.m

MachineLearning-master\Kmeans\testSet.txt

MachineLearning-master\Kmeans\testkMeans.m

MachineLearning-master\Logistic-regression

MachineLearning-master\Logistic-regression\ImproveStocGradAscent.m

MachineLearning-master\Logistic-regression\README.md

MachineLearning-master\Logistic-regression\gradAscent.m

MachineLearning-master\Logistic-regression\stocGradAscent.m

MachineLearning-master\Logistic-regression\testSet.txt

MachineLearning-master\MLP

MachineLearning-master\MLP\dualperceptron.py

MachineLearning-master\MLP\perceptron.py

MachineLearning-master\MLP\testSet.txt

MachineLearning-master\PCA

MachineLearning-master\PCA\PCA.m

MachineLearning-master\PCA\README.md

MachineLearning-master\PCA\testPCA.m

MachineLearning-master\PCA\testSet.txt

MachineLearning-master\README.md

MachineLearning-master\bikMeans

MachineLearning-master\bikMeans\README.md

MachineLearning-master\bikMeans\bikMeans.m

MachineLearning-master\bikMeans\testSet.txt

MachineLearning-master\kalmanFilter

MachineLearning-master\kalmanFilter\KF.m

MachineLearning-master\kalmanFilter\kalmanFiltering.m

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org