文件名称:SRC
介绍说明--下载内容均来自于网络,请自行研究使用
最大限度地平 FIR 逼近 (拉格朗日插值法)
拉格朗日插值是一种时域方法,导致基于多项式的筛选器的一个特殊情况。用 M 次多项式近似表示输出信号。最简单的情况 (M = 1) 对应于线性插值。让我们设计和分析将通过各种馏分拆分单元延迟的几种线性分数时滞滤波器:(Maximally-Flat FIR Approximation (Lagrange Interpolation)
Lagrange interpolation is a time-domain approach that leads to a special case of polynomial-based filters. The output signal is approximated with a polynomial of degree M. The simplest case (M=1) corresponds to linear interpolation. Let's design and analyze several linear fractional delay filters that will split the unit delay by various fractions:)
拉格朗日插值是一种时域方法,导致基于多项式的筛选器的一个特殊情况。用 M 次多项式近似表示输出信号。最简单的情况 (M = 1) 对应于线性插值。让我们设计和分析将通过各种馏分拆分单元延迟的几种线性分数时滞滤波器:(Maximally-Flat FIR Approximation (Lagrange Interpolation)
Lagrange interpolation is a time-domain approach that leads to a special case of polynomial-based filters. The output signal is approximated with a polynomial of degree M. The simplest case (M=1) corresponds to linear interpolation. Let's design and analyze several linear fractional delay filters that will split the unit delay by various fractions:)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
1.7 Sample Rate Conversion.pdf
Callbacks_SRC_GUI25.m
Read_Me.txt
srconv.m
SRCONV.mat
SRC_GUI25.m
SRC_GUI25.mlappinstall
SRC_GUI25.prj
SRC_Snapshot_1.JPG
license.txt
Callbacks_SRC_GUI25.m
Read_Me.txt
srconv.m
SRCONV.mat
SRC_GUI25.m
SRC_GUI25.mlappinstall
SRC_GUI25.prj
SRC_Snapshot_1.JPG
license.txt