文件名称:MVDR
介绍说明--下载内容均来自于网络,请自行研究使用
波束形成技术和信号空间波数谱估计是自由空间信号阵列处理的两个主要研究方面.MVDR是一种基于最大信干噪比(SINR)准则的自适应波束形成算法。MVDR
算法可以自适应的使阵列输出在期望方向上功率最小同时信干噪比最大。
将其应用于空间波数谱估计上可以在很大程度上提高分辨率和噪声抑制性能。本文将在深入分析MVDR算法原理的基础上,通过计算机仿真和海上试验数据处理的结果,
分析了MVDR算法在高分辨率空间波数谱估计应用中的性能。同时通过比较对角加载前后的数据处理结果,分析对角加载对MVDR的改进效果(mvdr is a kind of maximum signal to noise ratio (SINR) based on adaptive beam forming algorithm standard.Mvdr algorithm can make the adaptive array output in the desired direction of minimum power and SINR. Its application in spatial wavenumber spectrum estimation can improve the resolution and noise suppression performance to a great extent. In this paper on the basis of in-depth analysis on the principle of MVDR algorithm, data processing by computer simulation and sea trial results, analysis of the MVDR spectral estimation algorithm application performance in high resolution spatial wavenumber. At the same time by comparing the diagonal loading before and after the results of data processing, analysis and improvement effect of diagonal loading on MVDR)
算法可以自适应的使阵列输出在期望方向上功率最小同时信干噪比最大。
将其应用于空间波数谱估计上可以在很大程度上提高分辨率和噪声抑制性能。本文将在深入分析MVDR算法原理的基础上,通过计算机仿真和海上试验数据处理的结果,
分析了MVDR算法在高分辨率空间波数谱估计应用中的性能。同时通过比较对角加载前后的数据处理结果,分析对角加载对MVDR的改进效果(mvdr is a kind of maximum signal to noise ratio (SINR) based on adaptive beam forming algorithm standard.Mvdr algorithm can make the adaptive array output in the desired direction of minimum power and SINR. Its application in spatial wavenumber spectrum estimation can improve the resolution and noise suppression performance to a great extent. In this paper on the basis of in-depth analysis on the principle of MVDR algorithm, data processing by computer simulation and sea trial results, analysis of the MVDR spectral estimation algorithm application performance in high resolution spatial wavenumber. At the same time by comparing the diagonal loading before and after the results of data processing, analysis and improvement effect of diagonal loading on MVDR)
相关搜索: mvdr
(系统自动生成,下载前可以参看下载内容)
下载文件列表
MVDR_robust3.m
MVDR_robust.m
MVDR_robust.m