文件名称:LOMO_XQDA
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2016-06-13
- 文件大小:
- 1.1mb
- 下载次数:
- 0次
- 提 供 者:
- hom***
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
行人重定位算法,识别效果非常好,有源码和文章-Person re-identification is an important technique towards
automatic search of a person’s presence in a surveillance
video. Two fundamental problems are critical for
person re-identification, feature representation and metric
learning. An effective feature representation should be robust
to illumination and viewpoint changes, and a discriminant
metric should be learned to match various person images.
In this paper, we propose an effective feature representation
called Local Maximal Occurrence (LOMO), and
a subspace and metric learning method called Cross-view
Quadratic Discriminant Analysis (XQDA). The LOMO feature
analyzes the horizontal occurrence of local features,
and maximizes the occurrence to make a stable representation
against viewpoint changes. Besides, to handle illumination
variations, we apply the Retinex transform and a
scale invariant texture operator. To learn a discriminant
metric, we propose to learn a discriminant low dimensional
subspace by cross-vi
automatic search of a person’s presence in a surveillance
video. Two fundamental problems are critical for
person re-identification, feature representation and metric
learning. An effective feature representation should be robust
to illumination and viewpoint changes, and a discriminant
metric should be learned to match various person images.
In this paper, we propose an effective feature representation
called Local Maximal Occurrence (LOMO), and
a subspace and metric learning method called Cross-view
Quadratic Discriminant Analysis (XQDA). The LOMO feature
analyzes the horizontal occurrence of local features,
and maximizes the occurrence to make a stable representation
against viewpoint changes. Besides, to handle illumination
variations, we apply the Retinex transform and a
scale invariant texture operator. To learn a discriminant
metric, we propose to learn a discriminant low dimensional
subspace by cross-vi
(系统自动生成,下载前可以参看下载内容)
下载文件列表
LOMO_XQDA\bin\Retinex.mexa64
.........\...\Retinex.mexglx
.........\...\Retinex.mexw32
.........\...\Retinex.mexw64
.........\code\Demo_LOMO.m
.........\....\Demo_XQDA.m
.........\....\EvalCMC.m
.........\....\LOMO.m
.........\....\MahDist.m
.........\....\SILTP.m
.........\....\XQDA.m
.........\images\000_45_a.bmp
.........\......\000_45_b.bmp
.........\Liao-CVPR15-LOMO-XQDA.pdf
.........\LICENSE
.........\README.txt
.........\results\cuhk01_lomo_xqda.mat
.........\.......\cuhk03_detected_lomo_xqda.mat
.........\.......\cuhk03_labeled_lomo_xqda.mat
.........\.......\qmul_grid_lomo_xqda.mat
.........\.......\qmul_grid_lomo_xqda_camera-network.mat
.........\.......\viper_lomo_xqda.mat
.........\bin
.........\code
.........\data
.........\images
.........\results
LOMO_XQDA