文件名称:shenjingwangl
介绍说明--下载内容均来自于网络,请自行研究使用
《MATLAB神经网络原理与实例精解(附光盘)》首先简要介绍了MATLAB软件的使用和常用的内置函数,随后分门别类地介绍了BP网络、径向基网络、自组织网络、反馈网络等不同类型的神经网络-
Matlab neural network theory and examples of (CD-ROM) begins with a brief introduction to the use of MATLAB software and commonly used built-in function, then categorized the BP network, RBF network, self organization network, feedback network, such as different types of neural network
Matlab neural network theory and examples of (CD-ROM) begins with a brief introduction to the use of MATLAB software and commonly used built-in function, then categorized the BP network, RBF network, self organization network, feedback network, such as different types of neural network
(系统自动生成,下载前可以参看下载内容)
下载文件列表
本书源文件
..........\第10章 随机神经网络
..........\...................\example10_1.m
..........\...................\sa_func.m
..........\...................\sa_tsp.m
..........\...................\tsp_len.m
..........\...................\tsp_new_path.m
..........\第11章 用GUI设计神经网络
..........\........................\fit_test.m
..........\........................\pr_test.m
..........\........................\som_test.m
..........\........................\stock1.mat
..........\第13章 神经网络应用实例
..........\.......................\BP神经网络实现图像压缩
..........\.......................\......................\block_divide.m
..........\.......................\......................\bp_imageCompress.m
..........\.......................\......................\bp_imageRecon.m
..........\.......................\......................\comp.mat
..........\.......................\......................\lena.bmp
..........\.......................\......................\re_divide.m
..........\.......................\Elman网络预测上证股市开盘价
..........\.......................\...........................\elm_stock.mat
..........\.......................\...........................\elm_stockpredict.m
..........\.......................\...........................\elman_stock.m
..........\.......................\基于BP网络的个人信贷信用评估
..........\.......................\............................\credit_class.m
..........\.......................\............................\german.data
..........\.......................\............................\german.data-numeric
..........\.......................\基于概率神经网络的手写体数字识别
..........\.......................\................................\digital_pic
..........\.......................\................................\...........\0_001.bmp
..........\.......................\................................\...........\0_002.bmp
..........\.......................\................................\...........\0_003.bmp
..........\.......................\................................\...........\0_004.bmp
..........\.......................\................................\...........\0_005.bmp
..........\.......................\................................\...........\0_006.bmp
..........\.......................\................................\...........\0_007.bmp
..........\.......................\................................\...........\0_008.bmp
..........\.......................\................................\...........\0_009.bmp
..........\.......................\................................\...........\0_010.bmp
..........\.......................\................................\...........\0_011.bmp
..........\.......................\................................\...........\0_012.bmp
..........\.......................\................................\...........\0_013.bmp
..........\.......................\................................\...........\0_014.bmp
..........\.......................\................................\...........\0_015.bmp
..........\.......................\................................\...........\0_016.bmp
..........\.......................\................................\...........\0_017.bmp
..........\.......................\................................\...........\0_018.bmp
..........\.......................\................................\...........\0_019.bmp
..........\.......................\................................\...........\0_020.bmp
..........\.......................\................................\...........\0_021.bmp
..........\.......................\................................\...........\0_022.bmp
..........\.......................\................................\...........\0_023.bmp
..........\.......................\................................\...........\0_024.bmp
..........\.......................\................................\...........\0_025.bmp
..........\.......................\................................\...........\0_026.bmp
...