文件名称:gpml-matlab-v3.6-2015-07-07

  • 所属分类:
  • matlab例程
  • 资源属性:
  • [Matlab] [源码]
  • 上传时间:
  • 2016-03-25
  • 文件大小:
  • 976kb
  • 下载次数:
  • 0次
  • 提 供 者:
  • 相关连接:
  • 下载说明:
  • 别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容均来自于网络,请自行研究使用

这是一个高斯过程回归和分类工具箱,功能非常齐全,可以为解决高斯过程相关的问题提供很多帮助- GAUSSIAN PROCESS REGRESSION AND CLASSIFICATION Toolbox version 3.6

  for GNU Octave 3.2.x and Matlab 7.x



Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2015-07-07.







0) HOW TO READ

==============



If you want to get started without further delay, then read section 1) below

and jump right to the examples in doc/index.html.







1) ABOUT THESE PROGRAMS

=======================



This collection of matlab programs implements and demonstrates some of the

algorithms described in

a) the book by Rasmussen and Williams: Gaussian Processes for Machine Learning ,

  the MIT Press 2006, in

b) the article by Nickisch and Rasmussen: Approximations for Binary Gaussian

  Process Classification , JMLR 2008, in

c) the article by Candela and Rasmussen: A Unifying View of Sparse Approximate

  Gaussian Process Regression , JMLR 2005, in

d) the paper by Murray, Adams and Mackay: Elliptical slice sampling ,

  AISTATS 2010, in

e) the report by Neal: Anneale
(系统自动生成,下载前可以参看下载内容)

下载文件列表





gpml-matlab-v3.6-2015-07-07\.octaverc

...........................\Copyright

...........................\cov

...........................\...\covADD.m

...........................\...\covConst.m

...........................\...\covCos.m

...........................\...\covDiscrete.m

...........................\...\covEye.m

...........................\...\covFITC.m

...........................\...\covGaborard.m

...........................\...\covGaboriso.m

...........................\...\covGrid.m

...........................\...\covLIN.m

...........................\...\covLINard.m

...........................\...\covLINiso.m

...........................\...\covLINone.m

...........................\...\covMask.m

...........................\...\covMaternard.m

...........................\...\covMaterniso.m

...........................\...\covNNone.m

...........................\...\covNoise.m

...........................\...\covPERard.m

...........................\...\covPeriodic.m

...........................\...\covPeriodicNoDC.m

...........................\...\covPERiso.m

...........................\...\covPoly.m

...........................\...\covPPard.m

...........................\...\covPPiso.m

...........................\...\covPref.m

...........................\...\covProd.m

...........................\...\covRQard.m

...........................\...\covRQiso.m

...........................\...\covScale.m

...........................\...\covSEard.m

...........................\...\covSEfact.m

...........................\...\covSEiso.m

...........................\...\covSEisoU.m

...........................\...\covSEvlen.m

...........................\...\covSM.m

...........................\...\covSum.m

...........................\covFunctions.m

...........................\doc

...........................\...\changelog

...........................\...\checkmark.png

...........................\...\demoClassification.m

...........................\...\demoGrid.m

...........................\...\demoRegression.m

...........................\...\f1.gif

...........................\...\f2.gif

...........................\...\f3.gif

...........................\...\f4.gif

...........................\...\f5.gif

...........................\...\f6.gif

...........................\...\f7.gif

...........................\...\f8.gif

...........................\...\f9.png

...........................\...\gpml_randn.m

...........................\...\index.html

...........................\...\manual.pdf

...........................\...\README

...........................\...\style.css

...........................\...\usageClassification.m

...........................\...\usageCov.m

...........................\...\usageLik.m

...........................\...\usageMean.m

...........................\...\usagePrior.m

...........................\...\usageRegression.m

...........................\...\usageSampling.m

...........................\gp.m

...........................\inf

...........................\...\infEP.m

...........................\...\infExact.m

...........................\...\infFITC.m

...........................\...\infFITC_EP.m

...........................\...\infFITC_Laplace.m

...........................\...\infGrid.m

...........................\...\infGrid_Laplace.m

...........................\...\infKL.m

...........................\...\infLaplace.m

...........................\...\infLOO.m

...........................\...\infMCMC.m

...........................\...\infPrior.m

...........................\...\infVB.m

...........................\infMethods.m

...........................\lik

...........................\...\likBeta.m

...........................\...\likErf.m

...........................\...\likExp.m

...........................\...\likGamma.m

...........................\...\likGauss.m

...........................\...\likGaussWarp.m

...........................\...\likGumbel.m

...........................\...\likInvGauss.m

...........................\...\likLaplace.m

...........................\...\likLogistic.m

...........................\...\likMix.m

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org