文件名称:fenshujie5
介绍说明--下载内容均来自于网络,请自行研究使用
到目前为止,分数阶微分算子和分数阶积分算子在粘弹性理论中得到了最广泛的应恩.许多文献孛提到应用分数阶微分作为糕弹性材辫的数学模型是俘缀塞然的事情。值得一提的是,分数阶理论之所以在粘弹性材料建模上得到如此大的发展的主要原因是分数阶材料在工程领域的广泛应用.并且,只要给予适当的假设,几乎所有的分数酚模型都麓很好豹舞纳材瓣的变形特征,并对解释实际阕题起着糨当大的俸用-So far, the fractional differential operator and fractional integral operator shall obtain the broadest grace viscoelasticity theory. Many documents mentioned application Polo fractional calculus as a mathematical model of an elastic material braided cake is decorated Cypriot prisoners natural thing. It is worth mentioning that, fractional theory is obtained in the viscoelastic material modeling such a large development is the main reason Fractional materials widely used in engineering. And, if given appropriate assumptions, almost all of the phenolic fraction of the deformation characteristics of good models foot dance Carolina Panthers material flap, and explain the actual problem plays jiang tie when using large pension
(系统自动生成,下载前可以参看下载内容)
下载文件列表
分数阶系统的实验建模_稳定性分析与数值求解_王在华.pdf