文件名称:PRMLT-1.0
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2016-09-18
- 文件大小:
- 93kb
- 下载次数:
- 0次
- 提 供 者:
- 秦*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
模式识别和机器学习工具箱,十分有用。此版本为第一版。-Pattern recognition and machine learning toolbox very useful. This version is the first edition.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
PRMLT-1.0
.........\.gitignore
.........\README.md
.........\TODO.txt
.........\chapter01
.........\.........\condEntropy.m
.........\.........\entropy.m
.........\.........\jointEntropy.m
.........\.........\mutInfo.m
.........\.........\nmi.m
.........\.........\nvi.m
.........\.........\relatEntropy.m
.........\chapter02
.........\.........\logDirichlet.m
.........\.........\logGauss.m
.........\.........\logKde.m
.........\.........\logMn.m
.........\.........\logMvGamma.m
.........\.........\logSt.m
.........\.........\logVmf.m
.........\.........\logWishart.m
.........\chapter03
.........\.........\linReg.m
.........\.........\linRegFp.m
.........\.........\linRegPred.m
.........\.........\linRnd.m
.........\chapter04
.........\.........\binPlot.m
.........\.........\fda.m
.........\.........\logitBin.m
.........\.........\logitBinPred.m
.........\.........\logitMn.m
.........\.........\logitMnPred.m
.........\.........\sigmoid.m
.........\.........\softmax.m
.........\chapter05
.........\.........\mlp.m
.........\.........\mlpPred.m
.........\chapter06
.........\.........\kn2sd.m
.........\.........\knCenter.m
.........\.........\knGauss.m
.........\.........\knKmeans.m
.........\.........\knKmeansPred.m
.........\.........\knLin.m
.........\.........\knPca.m
.........\.........\knPcaPred.m
.........\.........\knPoly.m
.........\.........\knReg.m
.........\.........\knRegPred.m
.........\.........\sd2kn.m
.........\chapter07
.........\.........\rvmBinFp.m
.........\.........\rvmBinPred.m
.........\.........\rvmRegFp.m
.........\.........\rvmRegPred.m
.........\.........\rvmRegSeq.m
.........\chapter08
.........\.........\nbBern.m
.........\.........\nbBernPred.m
.........\.........\nbGauss.m
.........\.........\nbGaussPred.m
.........\chapter09
.........\.........\kmeans.m
.........\.........\kmeansPred.m
.........\.........\kmeansRnd.m
.........\.........\kmedoids.m
.........\.........\linRegEm.m
.........\.........\mixBernEm.m
.........\.........\mixBernRnd.m
.........\.........\mixGaussEm.m
.........\.........\mixGaussPred.m
.........\.........\mixGaussRnd.m
.........\.........\rvmBinEm.m
.........\.........\rvmRegEm.m
.........\chapter10
.........\.........\linRegVb.m
.........\.........\mixGaussVb.m
.........\.........\mixGaussVbPred.m
.........\.........\rvmRegVb.m
.........\chapter11
.........\.........\Gauss.m
.........\.........\GaussWishart.m
.........\.........\dirichletRnd.m
.........\.........\discreteRnd.m
.........\.........\gaussRnd.m
.........\.........\mixDpGb.m
.........\.........\mixDpGbOl.m
.........\.........\mixGaussGb.m
.........\chapter12
.........\.........\fa.m
.........\.........\pca.m
.........\.........\pcaEm.m
.........\.........\pcaEmC.m
.........\.........\ppcaEm.m
.........\.........\ppcaRnd.m
.........\.........\ppcaVb.m
.........\chapter13
.........\.........\HMM
.........\.........\...\hmmEm.m