文件名称:acopost_note
介绍说明--下载内容均来自于网络,请自行研究使用
acopost是Ingo Schroder于02年在德国汉堡大学完成的一个词性标注工具包。主要实现了基于实例、最大熵、2元隐马、基于转换规则等4种词性标注算法,以及评价和算法融合等。采用的语言是perl和c,代码比较短小,非常适于学习。-acopost Ingo Schroder is a speech in 2002 at the University of Hamburg, Germany marked the completion of the toolkit. The main achievement of tagging algorithms, as well as uation and fusion algorithm based on examples, maximum entropy, 2 yuan hidden horse, based on the conversion rules, four kinds of speech and so on. Language is used in perl and c, the code is relatively short, very suitable for learning.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
acopost_note
............\acopost-1.8.6.tar.gz
............\comment
............\.......\array.c
............\.......\cooked2lex.pl
............\.......\cooked2ngram.pl
............\.......\cooked2wtree.pl
............\.......\et.c
............\.......\gis.c
............\.......\gis.h
............\.......\met.c
............\.......\t3.c
............\.......\tbt.c
............\.......\util.c
............\data
............\....\cooked.txt
............\....\dict
............\....\et
............\....\..\known.etf
............\....\..\known.wtree
............\....\..\res.et
............\....\..\unknown.etf
............\....\..\unknown.wtree
............\....\met
............\....\...\model
............\....\...\res1
............\....\...\res2
............\....\pk9801.txt
............\....\raw.txt
............\....\t3
............\....\..\ngram.t3
............\....\..\res.t3
............\....\..\trans_pb.t3
............\....\tbt
............\....\...\cooked_lex.txt
............\....\...\cooked_rul.txt
............\....\...\dict.tbt
............\....\...\res.tbt
............\....\...\rules.tbt
............\....\...\transitions.tbt.templates
............\....\...\unknown.tbt.templates
............\....\test
............\et.txt
............\met.txt
............\note_acopost.txt
............\README.txt
............\references
............\..........\(BR94)A rule-based approach to prepositional phrase attachment disambiguation.pdf
............\..........\(Bran00)TnT- a statistical part-of-speech tagger.pdf
............\..........\(Bril92)A simple rule-based part of speech tagger.pdf
............\..........\(Bril93')Transformation-based error-driven parsing.pdf
............\..........\(Bril93)Automatic grammar induction and parsing free text - a transformation-based approach.pdf
............\..........\(Bril94)Some advances in transformation-based part of speech tagging.pdf
............\..........\(Bril95')Unsupervised learning lf disambiguation rules for part of speech tagging.pdf
............\..........\(Bril95)Transformation-based error-driven learning and natural language processing - a case study in part-of-speech tagging.pdf
............\..........\(DBW97)IGTree using trees for compression and classification in lazy learning algorithms.pdf
............\..........\(DZBG96)MBT A memory-based part of speech tagger generator.pdf
............\..........\(For05)The Viterbi Algorithm- A Personal History.pdf
............\..........\(NF01)Transformation-based learning in the fast lane.pdf
............\..........\(Rat96)A maximum entropy model for part-of-speech tagging.pdf
............\..........\(Rat98)Maximum entropy models for natural language ambiguity resolution.pdf
............\..........\(Scha03)0410.pdf
............\..........\(Schr02')A case study in part-of-speech tagging using the ICOPOST toolkit.pdf
............\..........\(Schr02)ug.pdf
............\..........\(Xue03)Chinese word segmentation as character tagging.pdf
............\..........\(ZD99)Recent advances in memory-based part-of-speech tagging.pdf
............\t3.txt
............\tbt.txt
............\tool
............\....\pk2raw.py
............\....\raw2cooked.py
............\....\tbt_split_corpus.py