文件名称:Pedestrian-Detection

  • 所属分类:
  • 软件工程
  • 资源属性:
  • [Matlab] [源码]
  • 上传时间:
  • 2016-01-07
  • 文件大小:
  • 5.82mb
  • 下载次数:
  • 1次
  • 提 供 者:
  • 韩**
  • 相关连接:
  • 下载说明:
  • 别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容均来自于网络,请自行研究使用

ICCV2013:

简 称UDN算法,从文中描述的检测效果来看,该方法是所有方法中最好的,并且,效果远超过其他方法。经过对论文和该算法源码的研究,该算法是与作者另外一篇 论文的方法 ,另外的论文算法做图片扫描,得到矩形框,然后用该方法对矩形框进行进一步确认,以及降低误警率和漏警率。另外的论文是:Multi-Stage Contextual Deep Learning for Pedestrian Detection



说得难听一点,这篇文章对行人检测没有多大的贡献。仅仅是用深度学习的CNN做candidate window的确认。而主要的行人检测的算法还是HOG+CSS+adaboost-ICCV2013:

UDN algorithm, described in the paper the detection results, the method is the best of all the methods, and the effect is far more than other methods. Through the research of the thesis and the source code of the algorithm, the algorithm is and author also a paper method, also the algorithm do scan pictures and get the rectangular box, then by the method of rectangular box for further confirmation, and reduce the false alarm rate and false alarm rate. Another paper is: Contextual Deep Learning for Pedestrian Multi-Stage Detection

To put it bluntly, this article does not have much contribution to the pedestrian detection. Just use deep learning s CNN to do window candidate s confirmation. And the main pedestrian detection algorithm is HOG+CSS+adaboost
(系统自动生成,下载前可以参看下载内容)

下载文件列表





Joint Deep Learning for Pedestrian Detection\JDN_code\CNN\CDBNModel.mat

............................................\........\...\cnnapplygrads.m

............................................\........\...\cnnbp.m

............................................\........\...\cnnexamples.asv

............................................\........\...\cnnexamples.m

............................................\........\...\cnnff.m

............................................\........\...\CNNModel_init.mat

............................................\........\...\cnnsetup3.asv

............................................\........\...\cnnsetup3.m

............................................\........\...\cnntest.m

............................................\........\...\cnntrain.asv

............................................\........\...\cnntrain.m

............................................\........\...\compile.m

............................................\........\...\copycnnmodel.m

............................................\........\...\dtAccS.cc

............................................\........\...\dtAccS.mexw64

............................................\........\...\fconvn.cc

............................................\........\...\fconvn.mexw64

............................................\........\...\G.mat

............................................\........\...\GetAvgMiss.m

............................................\........\...\GetData_datareader.m

............................................\........\...\GetRegularizedW.m

............................................\........\...\GetSelWeight.m

............................................\........\...\showboxes.m

............................................\........\...\testCNNAll.m

............................................\........\...\testCNNCaltechTest2.m

............................................\........\...\testCNNCaltechTest4.asv

............................................\........\...\Testing.m

............................................\........\G.mat

............................................\........\model\CaltechTrain\CNN_CDBN_Model_iter2.mat

............................................\........\.....\INRIA\CNN_CDBN_Model_iter1.mat

............................................\........\.....\.....\CNN_CDBN_Model_iter2.mat

............................................\........\.....\.....\CNN_CDBN_Model_iter3.mat

............................................\........\.....\.....\CNN_CDBN_Model_iter4.mat

............................................\........\.....\.....\CNN_CDBN_Model_iter5.mat

............................................\........\NN\nnapplygrads.m

............................................\........\..\nnbp.m

............................................\........\..\nnchecknumgrad.m

............................................\........\..\nnexamples.m

............................................\........\..\nnff.m

............................................\........\..\nnsetup.m

............................................\........\..\nntest.m

............................................\........\..\nntrain.m

............................................\........\tmptoolbox\channels\chnsCompute.m

............................................\........\..........\........\chnsPyramid.m

............................................\........\..........\........\chnsScaling.m

............................................\........\..........\........\Contents.m

............................................\........\..........\........\convBox.m

............................................\........\..........\........\convMax.m

............................................\........\..........\........\convTri.m

............................................\........\..........\........\gradient2.m

............................................\........\..........\........\gradientHist.m

............................................\........\..........\........\gradientMag.m

............................................\........\..........\.

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org