文件名称:deepnet-master
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Linux] [SHELL] [源码]
- 上传时间:
- 2015-12-31
- 文件大小:
- 13.95mb
- 下载次数:
- 0次
- 提 供 者:
- 李**
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
Nitish Srivastava University of Toronto.利用GPU训练深度学习算法-Implementation of some deep learning algorithms. Nitish Srivastava
University of Toronto.
GPU-based python implementation of
1. Feed-forward Neural Nets
2. Restricted Boltzmann Machines
3. Deep Belief Nets
4. Autoencoders
5. Deep Boltzmann Machines
6. Convolutional Neural Nets
University of Toronto.
GPU-based python implementation of
1. Feed-forward Neural Nets
2. Restricted Boltzmann Machines
3. Deep Belief Nets
4. Autoencoders
5. Deep Boltzmann Machines
6. Convolutional Neural Nets
(系统自动生成,下载前可以参看下载内容)
下载文件列表
deepnet-master
..............\.gitignore
..............\cudamat
..............\.......\cudamat.cu
..............\.......\cudamat.cuh
..............\.......\cudamat.py
..............\.......\cudamat_conv.cu
..............\.......\cudamat_conv.cuh
..............\.......\cudamat_conv.py
..............\.......\cudamat_conv_kernels.cu
..............\.......\cudamat_conv_kernels.cuh
..............\.......\cudamat_kernels.cu
..............\.......\cudamat_kernels.cuh
..............\.......\examples
..............\.......\........\mnist.dat
..............\.......\........\mnist49.dat
..............\.......\........\nn_cudamat.py
..............\.......\........\rbm_cudamat.py
..............\.......\........\rbm_numpy.py
..............\.......\........\test2.py
..............\.......\........\util.py
..............\.......\gpu_lock.py
..............\.......\gpu_lock2.py
..............\.......\INSTALL.txt
..............\.......\LICENSE.txt
..............\.......\Makefile
..............\.......\rnd_multipliers_32bit.txt
..............\.......\run_on_me_or_pid_quit
..............\.......\test_cudamat.py
..............\.......\__init__.py
..............\deepnet
..............\.......\ais.py
..............\.......\choose_matrix_library.py
..............\.......\compute_data_stats.py
..............\.......\convolutions.py
..............\.......\cos_layer.py
..............\.......\datahandler.py
..............\.......\dbm.py
..............\.......\dbn.py
..............\.......\deepnet_pb2.py
..............\.......\edge.py
..............\.......\examples
..............\.......\........\ae
..............\.......\........\..\classifier.pbtxt
..............\.......\........\..\eval.pbtxt
..............\.......\........\..\model_layer1.pbtxt
..............\.......\........\..\model_layer2.pbtxt
..............\.......\........\..\runall.sh
..............\.......\........\..\train.pbtxt
..............\.......\........\convnet
..............\.......\........\.......\eval.pbtxt
..............\.......\........\.......\model_conv.pbtxt
..............\.......\........\.......\train.pbtxt
..............\.......\........\dbm
..............\.......\........\...\eval.pbtxt
..............\.......\........\...\model.pbtxt
..............\.......\........\...\runall.sh
..............\.......\........\...\train.pbtxt
..............\.......\........\dbn
..............\.......\........\...\eval.pbtxt
..............\.......\........\...\mnist_classifier.pbtxt
..............\.......\........\...\mnist_rbm1.pbtxt
..............\.......\........\...\mnist_rbm2.pbtxt
..............\.......\........\...\mnist_rbm3.pbtxt
..............\.......\........\...\runall.sh
..............\.......\........\...\train.pbtxt
..............\.......\........\...\train_classifier.pbtxt
..............\.......\........\ff
..............\.......\........\..\eval.pbtxt
..............\.......\........\..\extract_reps.sh
..............\.......\........\..\model.pbtxt
..............\.......\........\..\model_dropout.pbtxt
..............\.......\........\..\runall.sh
..............\.......\........\..\train.pbtxt
..............\.......\........\mnist.pbtxt
..............\.......\........\multimodal_dbn
..............\.......\........\..............\collect_dbn_reps.py
..............\.......\........\..............\create_results_table.py
..............\.......\........\..............\eval.pbtxt
..............\.......\........\..............\LICENSE.txt
..............\.......\........\..............\merge_dataset_pb.py
..............\.......\........\..............\models
..............\.......\........\..............\......\classifiers
..............\.......\........\..............\......\...........\image_hidden1_classifier.pbtxt
..............\.......\........\..............\......\...........\image_hidden2_classifier.pbtxt
..............\.......\........\..............\......\...........\image_input_classifier.pbtxt
..............\.......\........\..............\......\...........\joint_hidden_classifier.pbtxt
..............\.......\........\..............\......\...........\text_hi