文件名称:ian_mitchell-toolboxls
- 所属分类:
- 图形图像处理(光照,映射..)
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2015-05-28
- 文件大小:
- 274kb
- 下载次数:
- 0次
- 提 供 者:
- 沙**
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
这个工具箱是对水平集方法的matlab程序的搜集。这些程序应用数值算法在任一维度来近似基于时间变化的汉密尔顿雅可比偏微分方程的解。汉密尔顿雅可比偏微分方程常用动画演示动态隐式曲面,计算流体动力学,并且它是独立在最优控制,微分博弈机器人,金融数学,连续的可达性等兴趣领域。-The Toolbox of Level Set Methods (ToolboxLS) is a collection of Matlab
routines that implement numerical algorithms to approximate the
solution of the time-dependent Hamilton-Jacobi (HJ) partial
differential equation (PDE) in any number of dimensions. The HJ PDE
is often used for simulating dynamic implicit surfaces in animation
and computational fluid dynamics (CFD), and it is of independent
interest in areas of optimal control, differential games, robotics,
financial mathematics, continuous reachability, etc.
routines that implement numerical algorithms to approximate the
solution of the time-dependent Hamilton-Jacobi (HJ) partial
differential equation (PDE) in any number of dimensions. The HJ PDE
is often used for simulating dynamic implicit surfaces in animation
and computational fluid dynamics (CFD), and it is of independent
interest in areas of optimal control, differential games, robotics,
financial mathematics, continuous reachability, etc.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
ian_mitchell-toolboxls\.hg_archival.txt
......................\.HGIGNORE
......................\.hgtags
......................\Examples\Basic\convectionDemo.m
......................\........\.....\laxFriedrichsDemo.m
......................\........\.....\maskDemo.m
......................\........\.....\reinitDemo.m
......................\........\.....\reinitDemoFigures.m
......................\........\OsherFedkiw\animateSpinStar.m
......................\........\...........\curvatureSpiralDemo.m
......................\........\...........\curvatureStarDemo.m
......................\........\...........\normalStarDemo.m
......................\........\...........\spinStarDemo.m
......................\........\...........\spiralFromEllipse.m
......................\........\...........\spiralFromPoints.m
......................\........\.....Shu\burgersLF.m
......................\........\........\nonconvexLF.m
......................\........\RUSSOSMEREKA\ellipseError.m
......................\........\............\reinit1D.m
......................\........\............\reinitCircle.m
......................\........\............\reinitEllipse.m
......................\........\.eachability\acoustic.m
......................\........\............\air3D.m
......................\........\............\airMode.m
......................\........\............\animateAcoustic.m
......................\........\............\animateAir3D.m
......................\........\............\figureAir3D.m
......................\........\SDE\exerciseKP529.m
......................\........\...\exerciseO169b.m
......................\........\...\linearAdditiveSDE.m
......................\........\...\testLinearAdditiveSDE.m
......................\........\.ethian\animateDumbbell.m
......................\........\.......\dumbbell1.m
......................\........\.......\tripleSine.m
......................\........\Test\argumentSemanticsTest.m
......................\........\....\firstDerivSpatialConverge.m
......................\........\....\firstDerivSpatialTest1.m
......................\........\....\ghostCell.m
......................\........\....\initialConditionsTest1D.m
......................\........\....\initialConditionsTest2D.m
......................\........\....\initialConditionsTest3D.m
......................\........\....\reinitTest.m
......................\........\.imeToReach\analyticDoubleIntegratorTTR.m
......................\........\...........\analyticHolonomicTTR.m
......................\........\...........\analyticSumSquareTTR.m
......................\........\...........\convectionTTR.m
......................\........\...........\convergeDoubleIntegratorTTR.m
......................\........\...........\convergeHolonomicTTR.m
......................\........\...........\doubleIntegratorTTR.m
......................\........\...........\holonomicTTR.m
......................\........\Vector\compareTerms.m
......................\........\......\smerekaSpirals.m
......................\........\......\visualizeOpenCurve.m
......................\........\addPathToKernel.m
......................\Kernel\BoundaryCondition\addGhostAllDims.m
......................\......\.................\addGhostDirichlet.m
......................\......\.................\addGhostExtrapolate.m
......................\......\.................\addGhostExtrapolate2.m
......................\......\.................\addGhostNeumann.m
......................\......\.................\addGhostPeriodic.m
......................\......\.................\addNodesAllDims.m
......................\......\ExplicitIntegration\Dissipation\artificialDissipationGLF.m
......................\......\...................\...........\artificialDissipationLLF.m
......................\......\...................\...........\artificialDissipationLLLF.m
......................\......\...................\Integrators\odeCFL1.m
......................\......\...................\...........\odeCFL2.m
......................\......\...................\...........\odeCFL3.m
................