文件名称:harmonic-analysis
- 所属分类:
- 微处理器(ARM/PowerPC等)
- 资源属性:
- [PDF]
- 上传时间:
- 2015-05-26
- 文件大小:
- 181kb
- 下载次数:
- 0次
- 提 供 者:
- j*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
快速傅立叶变换存在较大的误差, 无法直接用于电力
系统谐波分析。本文对 FFT 的泄漏误差进行了分析, 根据
Jain 和Grandke 提出的插值算法提出了多项余弦窗插值的
新算法, 对 FFT 的结果进行修正, 极大地提高了计算精度,
使之适用于电力系统的准确谐波分析。 文中给出了该算法进
行谐波分析模拟计算的算例, 计算结果表明, 不同的加窗算
法计算精度不同, 新算法的计算精度显著提高-Fast Fourier transform is a larger error, cannot be directly used for electric power
The system harmonic analysis. Error is analyzed in this paper, the leakage of FFT, according to
Jain and Grandke interpolation algorithm proposed a number of cosine window interpolation
The new algorithm, to modify the result of the FFT, greatly improve the calculation accuracy,
Make it suitable for the accurate harmonic analysis of power system. The algorithm are also given in this paper
Simulation examples of harmonic analysis, the results show that different window to calculate
Method of calculation accuracy is different, the calculation precision of the new algorithm improved significantly
系统谐波分析。本文对 FFT 的泄漏误差进行了分析, 根据
Jain 和Grandke 提出的插值算法提出了多项余弦窗插值的
新算法, 对 FFT 的结果进行修正, 极大地提高了计算精度,
使之适用于电力系统的准确谐波分析。 文中给出了该算法进
行谐波分析模拟计算的算例, 计算结果表明, 不同的加窗算
法计算精度不同, 新算法的计算精度显著提高-Fast Fourier transform is a larger error, cannot be directly used for electric power
The system harmonic analysis. Error is analyzed in this paper, the leakage of FFT, according to
Jain and Grandke interpolation algorithm proposed a number of cosine window interpolation
The new algorithm, to modify the result of the FFT, greatly improve the calculation accuracy,
Make it suitable for the accurate harmonic analysis of power system. The algorithm are also given in this paper
Simulation examples of harmonic analysis, the results show that different window to calculate
Method of calculation accuracy is different, the calculation precision of the new algorithm improved significantly
(系统自动生成,下载前可以参看下载内容)
下载文件列表
电力系统谐波分析的高精度FFT算法.pdf