文件名称:d
- 所属分类:
- 数据结构常用算法
- 资源属性:
- [Windows] [Visual C] [源码]
- 上传时间:
- 2015-05-27
- 文件大小:
- 672kb
- 下载次数:
- 0次
- 提 供 者:
- 刘**
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
稀疏矩阵的压缩存储:
实现稀疏矩阵压缩存储,并实现矩阵转置和求和。
输入矩阵时,首先需要输入非零元素的个数,然后分别输入矩阵的 行号,列号和值。
输完2个矩阵后,自动进行计算第一个矩阵的转置以及两个矩阵的和。
例如:输入如下:
100 90 5 //矩阵的行数为100,列数为90,共5个非零元素。
1 10 100 //a(1,10)=100
50 60 200//a(50,60)=200
50 80 100//a(50,80)=100
60 60 200//a(60,60)=200
99 89 10//a(99,89)=10
100 90 4 //矩阵b的行数为100,列数为90,共4个非零元素。
1 1 10 //b(1,1)=10
50 60 -200//b(50,60)=-200
50 80 100 //b(50,80)=100
70 70 10 //b(70,70)=10-Compressed storage sparse matrix: Implementing sparse matrix compression storage and realization matrix transpose and summation. When you enter the matrix, you first need to enter the number of non-zero elements of the matrix are input and line number, column number and value. Losers 2 matrix, the automatic calculation of a matrix transpose and matrix and the two. Example: Enter the following: Number of lines 100 905 // matrix is 100, the number of columns is 90, a total of five non-zero elements. 1 10 100 // a (1,10) = 100 50 60 200 // a (50,60) = 200 50 80 100 // a (50,80) = 100 60 60 200 // a (60,60) = 200 99 89 10 // a (99,89) = 10 100 90 4 // matrix b is the number of lines is 100, the number of columns is 90, a total of four non-zero elements. 1 1 10 // b (1,1) = 10 50 60-200 // b (50,60) =- 200 50 80 100 // b (50,80) = 100 70 70 10 // b (70, 70) = 10
实现稀疏矩阵压缩存储,并实现矩阵转置和求和。
输入矩阵时,首先需要输入非零元素的个数,然后分别输入矩阵的 行号,列号和值。
输完2个矩阵后,自动进行计算第一个矩阵的转置以及两个矩阵的和。
例如:输入如下:
100 90 5 //矩阵的行数为100,列数为90,共5个非零元素。
1 10 100 //a(1,10)=100
50 60 200//a(50,60)=200
50 80 100//a(50,80)=100
60 60 200//a(60,60)=200
99 89 10//a(99,89)=10
100 90 4 //矩阵b的行数为100,列数为90,共4个非零元素。
1 1 10 //b(1,1)=10
50 60 -200//b(50,60)=-200
50 80 100 //b(50,80)=100
70 70 10 //b(70,70)=10-Compressed storage sparse matrix: Implementing sparse matrix compression storage and realization matrix transpose and summation. When you enter the matrix, you first need to enter the number of non-zero elements of the matrix are input and line number, column number and value. Losers 2 matrix, the automatic calculation of a matrix transpose and matrix and the two. Example: Enter the following: Number of lines 100 905 // matrix is 100, the number of columns is 90, a total of five non-zero elements. 1 10 100 // a (1,10) = 100 50 60 200 // a (50,60) = 200 50 80 100 // a (50,80) = 100 60 60 200 // a (60,60) = 200 99 89 10 // a (99,89) = 10 100 90 4 // matrix b is the number of lines is 100, the number of columns is 90, a total of four non-zero elements. 1 1 10 // b (1,1) = 10 50 60-200 // b (50,60) =- 200 50 80 100 // b (50,80) = 100 70 70 10 // b (70, 70) = 10
(系统自动生成,下载前可以参看下载内容)
下载文件列表
实验4
.....\44.cpp
.....\44.dsp
.....\44.dsw
.....\44.ncb
.....\44.opt
.....\44.plg
.....\Debug
.....\.....\44.exe
.....\.....\44.ilk
.....\.....\44.obj
.....\.....\44.pdb
.....\.....\vc60.idb
.....\.....\vc60.pdb
.....\题目.txt