文件名称:New-folder-(4)

介绍说明--下载内容均来自于网络,请自行研究使用

We begin with choosing two random large distinct primes p and q. We

also pick e, a random integer that is relatively prime to (p-1)*(q-1). The

random integer e is the encryption exponent. Let n = p*q. Using Euclid s

greatest common divisor algorithm, one can compute d, the decryption

exponent, such that:

e*d = 1 (mod (p-1)*(q-1))

Both plaintext m and ciphertext c should be in the set of nonnegative

integers. Furthermore, before encrypting a plaintext message m, we need

to make sure that 0 <= m < n. If m is greater than the modulus n, the result

c of the encryption will not be a unique one-to-one mapping m to c.

From one of the theorems of Euler s, we know that for all integers m,

med = m (mod n) -We begin with choosing two random large distinct primes p and q. We

also pick e, a random integer that is relatively prime to (p-1)*(q-1). The

random integer e is the encryption exponent. Let n = p*q. Using Euclid s

greatest common divisor algorithm, one can compute d, the decryption

exponent, such that:

e*d = 1 (mod (p-1)*(q-1))

Both plaintext m and ciphertext c should be in the set of nonnegative

integers. Furthermore, before encrypting a plaintext message m, we need

to make sure that 0 <= m < n. If m is greater than the modulus n, the result

c of the encryption will not be a unique one-to-one mapping m to c.

From one of the theorems of Euler s, we know that for all integers m,

med = m (mod n)
(系统自动生成,下载前可以参看下载内容)

下载文件列表





RSA.frm

frmView.frm

frmView.frx

Project.vbp

Project.vbw

RSA.bas

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org