文件名称:self-taught-learning
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2015-09-28
- 文件大小:
- 8.8mb
- 下载次数:
- 0次
- 提 供 者:
- 单**
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
自主学习把稀疏自编码器和分类器实现结合。先通过稀疏自编码对无标签的5-9的手写体进行训练得到最优参数,然后通过前向传播,得到训练集和测试集的特征,通过0-4有标签训练集训练出softmax模型,然后输入测试集到分类模型实现分类。-Independent Learning the encoder and the sparse classifiers achieve the combination. First through sparse coding since no label was handwritten 5-9 training obtain the optimal parameters, and then through the front propagation, get the training and test sets of features, a label by 0-4 trained softmax model train set, then enter the test set to the classification model to classify.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
self-taught learning
....................\display_network.m
....................\feedForwardAutoencoder.m
....................\initializeParameters.m
....................\loadMNISTImages.m
....................\loadMNISTLabels.m
....................\mnist-train-images.idx3-ubyte
....................\mnist-train-labels.idx1-ubyte
....................\softmaxCost.m
....................\softmaxPredict.asv
....................\softmaxPredict.m
....................\softmaxTrain.m
....................\sparseAutoencoderCost.m
....................\stlExercise.asv
....................\stlExercise.m