文件名称:DeepLearningTutorials-python

介绍说明--下载内容均来自于网络,请自行研究使用

深度神经网络轻量级工具包,Python简单实现,内含各种模型的代码以及模型的简单理解说明,适合初学者阅读使用。-Deep Neural Networks lightweight toolkit, Python simple implementation, containing simple to understand explanation of each model and the model code, suitable for beginners read.
(系统自动生成,下载前可以参看下载内容)

下载文件列表





DeepLearningTutorials-python

............................\.gitignore

............................\.hgignore

............................\.travis.yml

............................\code

............................\....\cA.py

............................\....\convolutional_mlp.py

............................\....\dA.py

............................\....\DBN.py

............................\....\hmc

............................\....\...\hmc.py

............................\....\...\test_hmc.py

............................\....\...\__init__.py

............................\....\logistic_cg.py

............................\....\logistic_sgd.py

............................\....\mlp.py

............................\....\rbm.py

............................\....\rnnrbm.py

............................\....\rnnslu.py

............................\....\SdA.py

............................\....\test.py

............................\....\utils.py

............................\data

............................\....\download.sh

............................\....\training_colorpatches_16x16_demo.mat

............................\doc

............................\...\.templates

............................\...\..........\layout.html

............................\...\conf.py

............................\...\contents.txt

............................\...\dA.txt

............................\...\DBN.txt

............................\...\deep.txt

............................\...\gettingstarted.txt

............................\...\hmc.txt

............................\...\images

............................\...\......\3wolfmoon.jpg

............................\...\......\3wolfmoon_output.png

............................\...\......\bm.png

............................\...\......\cnn_explained.png

............................\...\......\conv_1D_nn.png

............................\...\......\DBN3.png

............................\...\......\filters_at_epoch_14.png

............................\...\......\filters_corruption_0.png

............................\...\......\filters_corruption_30.png

............................\...\......\markov_chain.png

............................\...\......\mlp.png

............................\...\......\mnist_0.png

............................\...\......\mnist_1.png

............................\...\......\mnist_2.png

............................\...\......\mnist_3.png

............................\...\......\mnist_4.png

............................\...\......\mnist_5.png

............................\...\......\mylenet.png

............................\...\......\rbm.png

............................\...\......\rnnrbm.png

............................\...\......\rnnrbm.svg

............................\...\......\sample1.png

............................\...\......\sample2.png

............................\...\......\samples.png

............................\...\......\sparse_1D_nn.png

............................\...\intro.txt

............................\...\lenet.txt

............................\...\LICENSE.txt

............................\...\logreg.txt

............................\...\Makefile

............................\...\mlp.txt

............................\...\rbm.txt

............................\...\references.txt

............................\...\rnnrbm.txt

............................\...\rnnslu.txt

............................\...\scripts

............................\...\.......\docgen.py

............................\...\SdA.txt

............................\...\utilities.txt

............................\issues_closed

............................\.............\2_RBM_cost_fn.txt

............................\issues_open

............................\...........\1_SdA_performance.txt

............................\...........\3_RBM_scan_GPU.txt

............................\...........\4_RBM_scan.txt

............................\...........\5_results.txt

............................\...........\6_benchmarking_pybrain.txt

............................\misc

............................\....\do_nightly_build

............................\R

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org