文件名称:tixingguanzi2
介绍说明--下载内容均来自于网络,请自行研究使用
分析了支持向量回归机在能源需求预测中的优势,确定了输入向量集合和输出向量集合,建立了基于Matlab技术的SVR能源需求预测模型.对我国1985-2008年能源需求相关数据进行模拟与仿真,并对中国2010年和2020年能源需求量进行预测.研究结果表明:一是中国未来对能源的需求量逐渐增加,从2010年的330400万吨标准煤上升到2020年418320万吨标准煤,年均增长率为2.39%;二是在解决我国能源系统小样本.非线性及高维模式识别问题中SVR比BP神经网络等方法有更高的预测精度.-Support vector regression analyzes advantage in energy demand forecast to determine the set of input vectors and output vector set, established SVR energy demand forecasting model based on Matlab technology. Energy demand for our 1985-2008 related data modeling and simulation , and China in 2010 and 2020 energy demand forecast results show that: First, China s increasing demand for energy in the future, from 3.304 billion tons of standard coal in 2010 rose to 4.1832 billion tons of standard coal in 2020, average annual growth rate of 2.39 second is to solve our energy system small sample nonlinear and high dimensional pattern recognition problem SVR higher prediction accuracy than the BP neural network method.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
matlab代写、matlab代做 QQ 1747812398.pdf
梯形管内壁等离子体离子注入鞘层扩展MATLAB-PIC数值模拟.pdf