文件名称:LW_utux0_3
- 所属分类:
- matlab例程
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2014-07-02
- 文件大小:
- 1kb
- 下载次数:
- 0次
- 提 供 者:
- kingo******
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
function un=LW_utux0_3(dx,t)
Burgers equation:
ut + (1/2*u^2)x = 0
初始条件为:
u(x,0) = exp[-10(4x-1)^2]
边界条件为:
u(0,t)=0,u(1,t)=0
本题要求:
使用Lax-Windroff格式,选择 dx=0.01, 计算并画出当
t=0.15,和t=0.3时的数值解
输入:
dx--数值格式的x轴上的分割
r--r=dt/dx,本题预设r=0.5
t--要求解的时间
输出:
un--在时间t时的1×N数值解矩阵
输出图像:
数值解的图像-function un = LW_utux0_3 (dx, t) Burgers equation: ut+ (1/2* u ^ 2) x = 0 Initial conditions: u (x, 0) = exp [-10 (4x- 1) ^ 2] boundary conditions: u (0, t) = 0, u (1, t) = 0 of the questions asked: using the Lax-Windroff format, select dx = 0.01, calculated and drawn as t = 0.15, and t = 0.3 of the numerical solution of input: dx- x-axis numerical format partition r- r = dt/dx, the title by default r = 0.5 t- to be solved Time Output: un- 1N numerical solution matrix of the output image at time t: Numerical Solution of the image
Burgers equation:
ut + (1/2*u^2)x = 0
初始条件为:
u(x,0) = exp[-10(4x-1)^2]
边界条件为:
u(0,t)=0,u(1,t)=0
本题要求:
使用Lax-Windroff格式,选择 dx=0.01, 计算并画出当
t=0.15,和t=0.3时的数值解
输入:
dx--数值格式的x轴上的分割
r--r=dt/dx,本题预设r=0.5
t--要求解的时间
输出:
un--在时间t时的1×N数值解矩阵
输出图像:
数值解的图像-function un = LW_utux0_3 (dx, t) Burgers equation: ut+ (1/2* u ^ 2) x = 0 Initial conditions: u (x, 0) = exp [-10 (4x- 1) ^ 2] boundary conditions: u (0, t) = 0, u (1, t) = 0 of the questions asked: using the Lax-Windroff format, select dx = 0.01, calculated and drawn as t = 0.15, and t = 0.3 of the numerical solution of input: dx- x-axis numerical format partition r- r = dt/dx, the title by default r = 0.5 t- to be solved Time Output: un- 1N numerical solution matrix of the output image at time t: Numerical Solution of the image
(系统自动生成,下载前可以参看下载内容)
下载文件列表
LW_utux0_3.m