文件名称:9-Adaptive-Hammerstein-Predistorter-Using-the-Rec
介绍说明--下载内容均来自于网络,请自行研究使用
The digital baseband predistorter is an effective technique to compensate for the nonlinearity of
power amplifiers (PAs) with memory effects. However, most available adaptive predistorters based on direct
learning architectures suffer from slow convergence speeds. In this paper, the recursive prediction error
method is used to construct an adaptive Hammerstein predistorter based on the direct learning architecture,
which is used to linearize the Wiener PA model. The effectiveness of the scheme is demonstrated on a digital
video broadcasting-terrestrial system. Simulation results show that the predistorter outperforms previous
predistorters based on direct learning architectures in terms of convergence speed and linearization. A similar
algorithm can be applied to estimate the Wiener PA model, which will achieve high model accuracy.
power amplifiers (PAs) with memory effects. However, most available adaptive predistorters based on direct
learning architectures suffer from slow convergence speeds. In this paper, the recursive prediction error
method is used to construct an adaptive Hammerstein predistorter based on the direct learning architecture,
which is used to linearize the Wiener PA model. The effectiveness of the scheme is demonstrated on a digital
video broadcasting-terrestrial system. Simulation results show that the predistorter outperforms previous
predistorters based on direct learning architectures in terms of convergence speed and linearization. A similar
algorithm can be applied to estimate the Wiener PA model, which will achieve high model accuracy.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
9-Adaptive Hammerstein Predistorter Using the Recursive.pdf