文件名称:Exercise1-Sparse-Autoencoder
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2013-06-21
- 文件大小:
- 134kb
- 下载次数:
- 0次
- 提 供 者:
- Be***
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
网址:http://deeplearning.stanford.edu/wiki/index.php/Exercise:Sparse_Autoencoder斯坦福深度学习的教程,这个是稀疏编码的的练习,可以直接运行-URL: http://deeplearning.stanford.edu/wiki/index.php/Exercise:Sparse_Autoencoder Stanford deep learning tutorial, this is a sparse coding exercises that can be run directly
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Exercise1 Sparse Autoencoder\checkNumericalGradient.m
............................\computeNumericalGradient.m
............................\display_network.m
............................\initializeParameters.m
............................\minFunc\ArmijoBacktrack.m
............................\.......\autoGrad.m
............................\.......\autoHess.m
............................\.......\autoHv.m
............................\.......\autoTensor.m
............................\.......\callOutput.m
............................\.......\conjGrad.m
............................\.......\dampedUpdate.m
............................\.......\example_minFunc.m
............................\.......\example_minFunc_LR.m
............................\.......\isLegal.m
............................\.......\lbfgs.m
............................\.......\lbfgsC.c
............................\.......\lbfgsC.mexa64
............................\.......\lbfgsC.mexglx
............................\.......\lbfgsC.mexmac
............................\.......\lbfgsC.mexmaci
............................\.......\lbfgsC.mexmaci64
............................\.......\lbfgsC.mexw32
............................\.......\lbfgsC.mexw64
............................\.......\lbfgsUpdate.m
............................\.......\.ogistic\LogisticDiagPrecond.m
............................\.......\........\LogisticHv.m
............................\.......\........\LogisticLoss.m
............................\.......\........\mexutil.c
............................\.......\........\mexutil.h
............................\.......\........\mylogsumexp.m
............................\.......\........\repmatC.c
............................\.......\........\repmatC.dll
............................\.......\........\repmatC.mexglx
............................\.......\........\repmatC.mexmac
............................\.......\mchol.m
............................\.......\mcholC.c
............................\.......\mcholC.mexmaci64
............................\.......\mcholC.mexw32
............................\.......\mcholC.mexw64
............................\.......\mcholinc.m
............................\.......\minFunc.m
............................\.......\minFunc_processInputOptions.m
............................\.......\polyinterp.m
............................\.......\precondDiag.m
............................\.......\precondTriu.m
............................\.......\precondTriuDiag.m
............................\.......\rosenbrock.m
............................\.......\taylorModel.m
............................\.......\WolfeLineSearch.m
............................\sampleIMAGES.m
............................\sparseAutoencoderCost.m
............................\train.m
............................\weights.jpg
............................\minFunc\logistic
............................\minFunc
Exercise1 Sparse Autoencoder