文件名称:pca
介绍说明--下载内容均来自于网络,请自行研究使用
主成分分析(Principal Copmponent Analysis,简称PCA)是一种常用的机遇变量协方差矩阵对信息进行处理、压缩和提取的有效方法。主成分分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,能够发掘出隐藏在复杂数据背后的简单结构。-PCA (Principal Copmponent Analysis, abbreviated PCA) is a commonly used covariance matrix Opportunity information processing, compressing and extracting an effective manner. Principal component analysis, this method can effectively identify the data most " primary" elements and structures, removing noise and redundancy, the original complex data dimensionality reduction, to discover hidden behind the simple and complex data structures.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
pca.m