文件名称:Optimization-ALogirhtms
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
常用的最优化方法,包括SQP方法,二次规划,信赖域方法,共轭梯度法等-Commonly used optimization method, including the SQP method, quadratic programming, trust region method, conjugate gradient method
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Matlab 程序 最优化方法
......................\Hess.m
......................\SQP方法
......................\.......\lagsqp.asv
......................\.......\lagsqp.m
......................\.......\newtlagr.asv
......................\.......\newtlagr.m
......................\.......\qpsubp.asv
......................\.......\qpsubp.m
......................\.......\sqpm.asv
......................\.......\sqpm.m
......................\dfun1.m
......................\dgfun1.m
......................\dhfun.m
......................\dpfun.m
......................\ff.m
......................\fun.m
......................\fun1.m
......................\gfun.m
......................\gfun1.m
......................\gg.m
......................\gradd.m
......................\hfun.m
......................\phi.m
......................\乘子法程序
......................\..........\bfgs.m
......................\..........\df1.m
......................\..........\dg1.m
......................\..........\dh1.m
......................\..........\dmpsi.m
......................\..........\f1.m
......................\..........\g1.m
......................\..........\h1.m
......................\..........\mpsi.m
......................\..........\multphr.m
......................\二次规划
......................\........\callqpact.m
......................\........\qlag.asv
......................\........\qlag.m
......................\........\qpact.asv
......................\........\qpact.m
......................\信赖域方法
......................\..........\Hess.m
......................\..........\fun.m
......................\..........\gfun.m
......................\..........\trustm.m
......................\..........\trustq.m
......................\共轭梯度法
......................\..........\frcg.m
......................\..........\fun.m
......................\..........\gfun.m
......................\拟牛顿法
......................\........\bfgs.m
......................\........\broyden.m
......................\........\dfp.m
......................\........\fun.m
......................\........\gfun.m
......................\........\sr1.m
......................\最速下降法与牛顿法
......................\..................\Hess.m
......................\..................\dampnm.m
......................\..................\fun.m
......................\..................\gfun.m
......................\..................\grad.m
......................\..................\revisenm.m
......................\线搜索技术
......................\..........\armijo.m
......................\..........\golds.m
......................\..........\qmin.m
......................\非线性最小二乘问题
......................\..................\Fk.m
......................\..................\JFk.m
......................\..................\lmm.m