文件名称:MATLAB-algorithm
介绍说明--下载内容均来自于网络,请自行研究使用
基于MATLAB的各种优化算法,里面含多种利用MATLAB进行的算法,简单实用-MATLAB various optimization algorithms, which contain a variety of algorithms using MATLAB, simple and practical
(系统自动生成,下载前可以参看下载内容)
下载文件列表
MATLAB的各种优化算法
....................\基于MATLAB的各种优化算法
....................\........................\MATLAB.pdf
....................\........................\第10章 非线性方程组求解
....................\........................\........................\DiffParam1.m
....................\........................\........................\DiffParam2.m
....................\........................\........................\SOR.m
....................\........................\........................\mulBFS.m
....................\........................\........................\mulConj.m
....................\........................\........................\mulDFP.m
....................\........................\........................\mulDNewton.m
....................\........................\........................\mulDamp.m
....................\........................\........................\mulDiscNewton.m
....................\........................\........................\mulFastDown.m
....................\........................\........................\mulGSND.m
....................\........................\........................\mulGXF1.m
....................\........................\........................\mulGXF2.m
....................\........................\........................\mulMix.m
....................\........................\........................\mulNewton.m
....................\........................\........................\mulNewtonSOR.m
....................\........................\........................\mulNewtonStev.m
....................\........................\........................\mulNumYT.m
....................\........................\........................\mulRank1.m
....................\........................\........................\mulSimNewton.m
....................\........................\........................\mulStablePoint.m
....................\........................\........................\mulVNewton.m
....................\........................\第11章 解线性方程组的直接法
....................\........................\............................\Crout.m
....................\........................\............................\Doolittle.m
....................\........................\............................\GaussJordanXQ.m
....................\........................\............................\GaussXQAllMain.m
....................\........................\............................\GaussXQByOrder.m
....................\........................\............................\GaussXQLineMain.m
....................\........................\............................\InvAddSide.m
....................\........................\............................\SymPos1.m
....................\........................\............................\SymPos2.m
....................\........................\............................\SymPos3.m
....................\........................\............................\Yesf.m
....................\........................\............................\conjgrad.m
....................\........................\............................\followup.m
....................\........................\............................\qrxq.m
....................\........................\第12章 解线性方程组的迭代法
....................\........................\............................\BGS.m
....................\........................\............................\BJ.m
....................\........................\............................\BSOR.m
....................\........................\............................\JOR.m
....................\........................\............................\SOR.m
....................\........................\............................\SSOR.m
....................\........................\............................\conjgrad.m
....................\........................\............................\crs.m
....................\........................\......