文件名称:3
介绍说明--下载内容均来自于网络,请自行研究使用
理发店营业仿真:
理发店有2名理发师,为每名顾客服务时间MU=20min+-SIGMA=3min服从正态分布,顾客相继到达,时间间隔服从1/LAMBDA=10min的指数分布.顾客到达后如发现店内有6人以上排队等待,30 顾客会选择离开,其余人继续等待.
要求:建模,仿真
一天10小时营业,统计N天内:
1.理发师实际服务人数
2.平均队长及因排队人数过多而离去的人数
3.ALPHA=0.05计算置信区间.
-Barber shop business simulation: two barber barbershop, service time per customer MU = 20min+-SIGMA-= 3min follow a normal distribution, the customers were arriving interval The obedience 1/LAMBDA = 10min exponential distribution. Customers arrive found store queued for more than 6 people, 30 of customers will choose to leave, the rest continue to wait. requirements: modeling, simulation day 10 hours a day, statistics N days: 1. barber actual service number 2. average captain and due the number of people queuing overrepresented departed 3.ALPHA = 0.05 confidence interval.
理发店有2名理发师,为每名顾客服务时间MU=20min+-SIGMA=3min服从正态分布,顾客相继到达,时间间隔服从1/LAMBDA=10min的指数分布.顾客到达后如发现店内有6人以上排队等待,30 顾客会选择离开,其余人继续等待.
要求:建模,仿真
一天10小时营业,统计N天内:
1.理发师实际服务人数
2.平均队长及因排队人数过多而离去的人数
3.ALPHA=0.05计算置信区间.
-Barber shop business simulation: two barber barbershop, service time per customer MU = 20min+-SIGMA-= 3min follow a normal distribution, the customers were arriving interval The obedience 1/LAMBDA = 10min exponential distribution. Customers arrive found store queued for more than 6 people, 30 of customers will choose to leave, the rest continue to wait. requirements: modeling, simulation day 10 hours a day, statistics N days: 1. barber actual service number 2. average captain and due the number of people queuing overrepresented departed 3.ALPHA = 0.05 confidence interval.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
3.cpp