文件名称:Support-vector-machine-
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
提出了一种支持矢量机的汉语声调识别新方法。论文首先在基频和对数能量的基础上,建立了一个适合于支
持矢量机分类的等维声调特征。然后对支持矢量机的多分类策略和不同核函数对声调识别的影响进行了实验研究。
与BP神经网络相比,支持矢量机具有更高的识别率和更强的推广能力。-This paper presents a novel support vector machine based Chinese tone recognition method.A
new tone recognition feature is first ex血acted using the fundamental frequency(FO)and logarithmic
energy.And how to select the method of SVM multi-class classification and kernel function is also discussed
by experiments.Compared with BP neural network,SVM has higher recognition rates and more strong
generalization.
持矢量机分类的等维声调特征。然后对支持矢量机的多分类策略和不同核函数对声调识别的影响进行了实验研究。
与BP神经网络相比,支持矢量机具有更高的识别率和更强的推广能力。-This paper presents a novel support vector machine based Chinese tone recognition method.A
new tone recognition feature is first ex血acted using the fundamental frequency(FO)and logarithmic
energy.And how to select the method of SVM multi-class classification and kernel function is also discussed
by experiments.Compared with BP neural network,SVM has higher recognition rates and more strong
generalization.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
支持矢量机的汉语声调识别.pdf