文件名称:Contains-examples-HMM
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 40kb
- 下载次数:
- 0次
- 提 供 者:
- che****
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
matlab程序,基于隐马尔科夫的语音识别源程序,内含例子,以及详细说明各个子程序的作用。-Contains examples, and detailed descr iption of the role of each subroutine. Speech recognition based on hidden Markov source,
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Contains examples-HMM
.....................\Examples
.....................\........\fixed_lag_demo.m
.....................\........\learn_dhmm_demo.m
.....................\........\learn_mhmm_demo.m
.....................\........\online_em_demo.m
.....................\Old
.....................\...\example1.m
.....................\...\fixed_lag_smoother.m
.....................\...\learn_hmm.m
.....................\...\online_em.m
.....................\...\online_em_hmm_demo.m
.....................\...\online_em_pomdp_demo.m
.....................\...\sample_markov_chain.m
.....................\README
.....................\approxeq.m
.....................\consist.m
.....................\dist2.m
.....................\em_converged.m
.....................\enumerate_loglik.m
.....................\fhmm_infer.m
.....................\fixed_lag_smoother.m
.....................\forwards.m
.....................\forwards_backwards.m
.....................\gaussian_prob.m
.....................\gmm.m
.....................\gmminit.m
.....................\init_mhmm.m
.....................\kmeans.m
.....................\learn_hmm.m
.....................\learn_mhmm.m
.....................\mk_dhmm_obs_lik.m
.....................\mk_fhmm_topology.m
.....................\mk_ghmm_obs_lik.m
.....................\mk_mhmm_obs_lik.m
.....................\mk_stochastic.m
.....................\normalise.m
.....................\online_em.m
.....................\prob_path.m
.....................\sample_dhmm.m
.....................\sample_discrete.m
.....................\sample_mc.m
.....................\sample_mdp.m
.....................\sample_mhmm.m
.....................\sample_pomdp.m
.....................\viterbi_path.m
.....................\说明.txt
.....................\Examples
.....................\........\fixed_lag_demo.m
.....................\........\learn_dhmm_demo.m
.....................\........\learn_mhmm_demo.m
.....................\........\online_em_demo.m
.....................\Old
.....................\...\example1.m
.....................\...\fixed_lag_smoother.m
.....................\...\learn_hmm.m
.....................\...\online_em.m
.....................\...\online_em_hmm_demo.m
.....................\...\online_em_pomdp_demo.m
.....................\...\sample_markov_chain.m
.....................\README
.....................\approxeq.m
.....................\consist.m
.....................\dist2.m
.....................\em_converged.m
.....................\enumerate_loglik.m
.....................\fhmm_infer.m
.....................\fixed_lag_smoother.m
.....................\forwards.m
.....................\forwards_backwards.m
.....................\gaussian_prob.m
.....................\gmm.m
.....................\gmminit.m
.....................\init_mhmm.m
.....................\kmeans.m
.....................\learn_hmm.m
.....................\learn_mhmm.m
.....................\mk_dhmm_obs_lik.m
.....................\mk_fhmm_topology.m
.....................\mk_ghmm_obs_lik.m
.....................\mk_mhmm_obs_lik.m
.....................\mk_stochastic.m
.....................\normalise.m
.....................\online_em.m
.....................\prob_path.m
.....................\sample_dhmm.m
.....................\sample_discrete.m
.....................\sample_mc.m
.....................\sample_mdp.m
.....................\sample_mhmm.m
.....................\sample_pomdp.m
.....................\viterbi_path.m
.....................\说明.txt