文件名称:lsvm-and-knn-elm
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
lsvm and knn elm
For training: elm_traing(TrainingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction)
OR: [TrainingTime, TrainingAccuracy] = elm_train(TrainingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction)
For testing/prediction: elm_predict(TestingData_File)
OR: [TestingTime, TestingAccuracy] = elm_predict(TestingData_File)
After training phase completed, the trained network model will be saved in ‘elm_model.mat’, which can be used for prediction by calling function elm_predict. The prediction output will be saved in ‘elm_output.mat’.-lsvm and knn elm
For training: elm_traing(TrainingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction)
OR: [TrainingTime, TrainingAccuracy] = elm_train(TrainingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction)
For testing/prediction: elm_predict(TestingData_File)
OR: [TestingTime, TestingAccuracy] = elm_predict(TestingData_File)
After training phase completed, the trained network model will be saved in ‘elm_model.mat’, which can be used for prediction by calling function elm_predict. The prediction output will be saved in ‘elm_output.mat’.
For training: elm_traing(TrainingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction)
OR: [TrainingTime, TrainingAccuracy] = elm_train(TrainingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction)
For testing/prediction: elm_predict(TestingData_File)
OR: [TestingTime, TestingAccuracy] = elm_predict(TestingData_File)
After training phase completed, the trained network model will be saved in ‘elm_model.mat’, which can be used for prediction by calling function elm_predict. The prediction output will be saved in ‘elm_output.mat’.-lsvm and knn elm
For training: elm_traing(TrainingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction)
OR: [TrainingTime, TrainingAccuracy] = elm_train(TrainingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction)
For testing/prediction: elm_predict(TestingData_File)
OR: [TestingTime, TestingAccuracy] = elm_predict(TestingData_File)
After training phase completed, the trained network model will be saved in ‘elm_model.mat’, which can be used for prediction by calling function elm_predict. The prediction output will be saved in ‘elm_output.mat’.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
lsvm.m
KNN.pdf