文件名称:RSA
介绍说明--下载内容均来自于网络,请自行研究使用
RSA 数字签名的基本思想
RSA数字签名的安全性依赖于大数分解的困难性。
1、参数与密钥生成
首先选取两个大素数p和q,计算
n=pq
其欧拉函数值
(p-1)*(q-1)
然后选取随机整数e,满足
gcd(e,(p-1)*(q-1)))=1
并计算
d=e^-1 mod((p-1)*(q-1))
则公钥为(e,n),私钥为d;p,q是秘密参数,需要保密。如不需要
保存,计算出e,d后可销毁。
2、签名算法
设待签名消息为m,对消息m的签名为
S=Sigk(m)=m^d mod n
3、签名的验证算法
当签名接受者收到签名(s,m)时,检验m=s^e mod n是否成立,以确定签名是否有效。-The basic idea of the RSA digital signatures RSA digital signature security depends on the difficulty of factoring large integers. 1, the parameters and the key generated by first selecting two large primes p and q, the calculated N = PQ the Euler function values (p-1)* (q-1) and then select a random integer e, satisfy the GCD (e, (p-1)* (q-1))) = 1 and calculate d = e ^-1 Mod ((p-1)* (q-1)) the public key (e, N), the private key D p, q is the secret parameters, the need for confidentiality. If do not want to save, calculate e, d can be destroyed. 2, the signature algorithm provided to be signed message m, the signature of the message m S = Sigk (m) = m ^ d mod n 3, when the signature verification of the signature algorithm when receiving the signature (s, m), testing m = s ^ e mod n is set up to determine whether the signature is valid.
RSA数字签名的安全性依赖于大数分解的困难性。
1、参数与密钥生成
首先选取两个大素数p和q,计算
n=pq
其欧拉函数值
(p-1)*(q-1)
然后选取随机整数e,满足
gcd(e,(p-1)*(q-1)))=1
并计算
d=e^-1 mod((p-1)*(q-1))
则公钥为(e,n),私钥为d;p,q是秘密参数,需要保密。如不需要
保存,计算出e,d后可销毁。
2、签名算法
设待签名消息为m,对消息m的签名为
S=Sigk(m)=m^d mod n
3、签名的验证算法
当签名接受者收到签名(s,m)时,检验m=s^e mod n是否成立,以确定签名是否有效。-The basic idea of the RSA digital signatures RSA digital signature security depends on the difficulty of factoring large integers. 1, the parameters and the key generated by first selecting two large primes p and q, the calculated N = PQ the Euler function values (p-1)* (q-1) and then select a random integer e, satisfy the GCD (e, (p-1)* (q-1))) = 1 and calculate d = e ^-1 Mod ((p-1)* (q-1)) the public key (e, N), the private key D p, q is the secret parameters, the need for confidentiality. If do not want to save, calculate e, d can be destroyed. 2, the signature algorithm provided to be signed message m, the signature of the message m S = Sigk (m) = m ^ d mod n 3, when the signature verification of the signature algorithm when receiving the signature (s, m), testing m = s ^ e mod n is set up to determine whether the signature is valid.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
RSA数字签名源程序\rsadss.cpp
RSA数字签名源程序