文件名称:RLS
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2012-12-28
- 文件大小:
- 1kb
- 下载次数:
- 0次
- 提 供 者:
- 张*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
仿真对象如下:
其中, v( k )为服从N (0,1) 分布的白噪声。输入信号u ( k) 采用M 序列,幅度为 1。M 序列由 9 级移位寄存器产生,x(i)=x(i-4)⊕x(i-9)。
选择如下辨识模型:
加权阵取Λ = I。
衰减因子β = 0.98,数据长度 L = 402。
辨识结果与理论值比较,基本相同。辨识结果可信
-he simulation object is as follows: among them, v (k) to obey N (0, 1) distribution of white noise. The input signal u (k) using M sequence, amplitude is 1. M sequence by 9 level shift register generation, x (I) = x (I- 4) ⊕ x (I- 9). Choose the identification model: weighted array take Λ = I. Attenuation factor β = 0.98, the data length L = 402. Identify the theoretical calculation and comparison, basically the same. Identification results are reliable
其中, v( k )为服从N (0,1) 分布的白噪声。输入信号u ( k) 采用M 序列,幅度为 1。M 序列由 9 级移位寄存器产生,x(i)=x(i-4)⊕x(i-9)。
选择如下辨识模型:
加权阵取Λ = I。
衰减因子β = 0.98,数据长度 L = 402。
辨识结果与理论值比较,基本相同。辨识结果可信
-he simulation object is as follows: among them, v (k) to obey N (0, 1) distribution of white noise. The input signal u (k) using M sequence, amplitude is 1. M sequence by 9 level shift register generation, x (I) = x (I- 4) ⊕ x (I- 9). Choose the identification model: weighted array take Λ = I. Attenuation factor β = 0.98, the data length L = 402. Identify the theoretical calculation and comparison, basically the same. Identification results are reliable
(系统自动生成,下载前可以参看下载内容)
下载文件列表
RLS.m