文件名称:sBOA
介绍说明--下载内容均来自于网络,请自行研究使用
贝叶斯优化算法是一种新的演化算法,通过贝叶斯概率统计的知识来学习后代,可是使演化朝有利的方向前进,程序用C实现了贝叶斯优化算法。-Bayesian Optimization Algorithm is a new evolutionary algorithm, through Bayesian probability and statistics to learn the knowledge of future generations, but to enable the evolution towards a favorable direction, procedures C achieved a Bayesian Optimization Algorithm.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
压缩包 : 55593379sboa.rar 列表 sBOA\K2.cc sBOA\args.cc sBOA\bayesian.cc sBOA\boa.cc sBOA\checkCycles.cc sBOA\computeCounts.cc sBOA\fitness.cc sBOA\getFileArgs.cc sBOA\graph.cc sBOA\header.cc sBOA\help.cc sBOA\main.cc sBOA\mymath.cc sBOA\population.cc sBOA\random.cc sBOA\recomputeGains.cc sBOA\replace.cc sBOA\select.cc sBOA\stack.cc sBOA\startUp.cc sBOA\statistics.cc sBOA\utils.cc sBOA\K2.h sBOA\args.h sBOA\bayesian.h sBOA\binary.h sBOA\boa.h sBOA\checkCycles.h sBOA\computeCounts.h sBOA\fitness.h sBOA\getFileArgs.h sBOA\graph.h sBOA\header.h sBOA\help.h sBOA\memalloc.h sBOA\mymath.h sBOA\population.h sBOA\random.h sBOA\recomputeGains.h sBOA\replace.h sBOA\select.h sBOA\stack.h sBOA\startUp.h sBOA\statistics.h sBOA\utils.h sBOA\Makefile sBOA\README sBOA\COPYRIGHT sBOA\examples\input.3decOverlap.31 sBOA\examples\input.3decOverlap.61 sBOA\examples\input.3decOverlap.91 sBOA\examples\input.3deceptive.30 sBOA\examples\input.3deceptive.60 sBOA\examples\input.3deceptive.90 sBOA\examples\input.bipolar.30 sBOA\examples\input.bipolar.60 sBOA\examples\input.bipolar.90 sBOA\examples\input.onemax.30 sBOA\examples\input.onemax.60 sBOA\examples\input.onemax.90 sBOA\examples\input.quadratic.30 sBOA\examples\input.quadratic.60 sBOA\examples\input.quadratic.90 sBOA\examples\input.trap5.30 sBOA\examples\input.trap5.60 sBOA\examples\input.trap5.90 sBOA\examples\output.3decOverlap.31.fitness sBOA\examples\output.3decOverlap.31.log sBOA\examples\output.3decOverlap.31.model sBOA\examples\output.3decOverlap.61.fitness sBOA\examples\output.3decOverlap.61.log sBOA\examples\output.3decOverlap.61.model sBOA\examples\output.3decOverlap.91.fitness sBOA\examples\output.3decOverlap.91.log sBOA\examples\output.3decOverlap.91.model sBOA\examples\output.3deceptive.30.fitness sBOA\examples\output.3deceptive.30.log sBOA\examples\output.3deceptive.30.model sBOA\examples\output.3deceptive.60.fitness sBOA\examples\output.3deceptive.60.log sBOA\examples\output.3deceptive.60.model sBOA\examples\output.3deceptive.90.fitness sBOA\examples\output.3deceptive.90.log sBOA\examples\output.3deceptive.90.model sBOA\examples\output.bipolar.30.fitness sBOA\examples\output.bipolar.30.log sBOA\examples\output.bipolar.30.model sBOA\examples\output.bipolar.60.fitness sBOA\examples\output.bipolar.60.log sBOA\examples\output.bipolar.60.model sBOA\examples\output.bipolar.90.fitness sBOA\examples\output.bipolar.90.log sBOA\examples\output.bipolar.90.model sBOA\examples\output.onemax.30.fitness sBOA\examples\output.onemax.30.log sBOA\examples\output.onemax.30.model sBOA\examples\output.onemax.60.fitness sBOA\examples\output.onemax.60.log sBOA\examples\output.onemax.60.model sBOA\examples\output.onemax.90.fitness sBOA\examples\output.onemax.90.log sBOA\examples\output.onemax.90.model sBOA\examples\output.quadratic.30.fitness sBOA\examples\output.quadratic.30.log sBOA\examples\output.quadratic.30.model sBOA\examples\output.quadratic.60.fitness sBOA\examples\output.quadratic.60.log sBOA\examples\output.quadratic.60.model sBOA\examples\output.quadratic.90.fitness sBOA\examples\output.quadratic.90.log sBOA\examples\output.quadratic.90.model sBOA\examples\output.trap5.30.fitness sBOA\examples\output.trap5.30.log sBOA\examples\output.trap5.30.model sBOA\examples\output.trap5.60.fitness sBOA\examples\output.trap5.60.log sBOA\examples\output.trap5.60.model sBOA\examples\output.trap5.90.fitness sBOA\examples\output.trap5.90.log sBOA\examples\output.trap5.90.model sBOA\examples sBOA