文件名称:Produce-a-variety-of-distribution
介绍说明--下载内容均来自于网络,请自行研究使用
1.duishuzhengtai:产生对数正态分布
2.gaussian:产生数据量为n的两个相互独立高斯分布y1、y2
3.junyun:自定义 0-1的均匀分布,n代表数据量,一般要大于1024(蒙特卡罗)
4.ruili:瑞利分布,m是瑞利分布的参数,n代表数据量,n一般要大于1024
5.kaifeng:产生开丰分布,其中m代表开丰分布的自由度,n表示产生的点数量
6.tfenbu:本函数产生自由度为m,数据量为n的t分布。
7.weibuer:a=1时,是指数分布;a=2时,是瑞利分布-1.duishuzhengtai: generating lognormal 2.gaussian: generating a data quantity n of two mutually independent Gaussian distribution Y1, Y2 3.junyun: custom uniform distribution of 0-1, n represents a data amount, generally large in 1024 (Monte Carlo) 4.ruili: Rayleigh distribution, m is a parameter of the Rayleigh distribution, n representative of the amount of data, n is generally greater than 1024 5.kaifeng: generating open abundance distribution, wherein m represents an open-abundance distribution freedom of degrees of freedom, n is the number of points generated 6.tfenbu: This function generates m, the amount of data for n t distribution. 7.weibuer: a = 1, the exponential distribution a = 2, is a Rayleigh distribution
2.gaussian:产生数据量为n的两个相互独立高斯分布y1、y2
3.junyun:自定义 0-1的均匀分布,n代表数据量,一般要大于1024(蒙特卡罗)
4.ruili:瑞利分布,m是瑞利分布的参数,n代表数据量,n一般要大于1024
5.kaifeng:产生开丰分布,其中m代表开丰分布的自由度,n表示产生的点数量
6.tfenbu:本函数产生自由度为m,数据量为n的t分布。
7.weibuer:a=1时,是指数分布;a=2时,是瑞利分布-1.duishuzhengtai: generating lognormal 2.gaussian: generating a data quantity n of two mutually independent Gaussian distribution Y1, Y2 3.junyun: custom uniform distribution of 0-1, n represents a data amount, generally large in 1024 (Monte Carlo) 4.ruili: Rayleigh distribution, m is a parameter of the Rayleigh distribution, n representative of the amount of data, n is generally greater than 1024 5.kaifeng: generating open abundance distribution, wherein m represents an open-abundance distribution freedom of degrees of freedom, n is the number of points generated 6.tfenbu: This function generates m, the amount of data for n t distribution. 7.weibuer: a = 1, the exponential distribution a = 2, is a Rayleigh distribution
(系统自动生成,下载前可以参看下载内容)
下载文件列表
产生各种分布的函数\duishuzhengtai.m
..................\gauseidel.m
..................\junyun.m
..................\kaifeng.m
..................\ruili.m
..................\tfenbu.m
..................\weibuer.m
产生各种分布的函数