文件名称:multi-class-problem

介绍说明--下载内容均来自于网络,请自行研究使用

将多类别问题分解成多个二类别问题是解决多类别分类问题的常用方式。传统one against all(OAA)分解方式的性能更多的依赖于个体分类器的精度,而不是它的差异性。本文介绍一种基于集成学习的适于多类问题的神经网络集成模型,其基本模块由一个OAA方式的二类别分类器和一个补充多类分类器组成。测试表明,该模型在多类问题上比其他经典集成算法有着更高的精度,并且有较少存储空间和计算时间的优势。-Decompose multi-class problem into multiple binary class problems is a common way to solve multi-class problem. The performance of the traditional one against all (OAA) decomposition way mainly depends on the accuracy of individual classifiers, not their diversity. In this paper, a new ensemble learning model applicable to multiclass domains is proposed. The proposed model is a neural network ensemble in which the base learners are composed by the union of a binary classifier and a complement multi-class classifier. Experimental results show that our model has higher accuracy than other classical ensemble learning for multi-class problems. And it has the superiority with less storage space and computation time.
(系统自动生成,下载前可以参看下载内容)

下载文件列表





新建文件夹\New_NNE_OAA.m

..........\New_NNE_OAA_Hierarchial.m

..........\New_NNE_OAA_Serial.m

..........\New_NNE_OAO.m

新建文件夹

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org