文件名称:MATLAB-
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
这里面有MATLAB常用的一些算法,用于计算数值计算,文件格式为.m-There MATLAB commonly used in some algorithms used to calculate the numerical calculation for the file format. M
(系统自动生成,下载前可以参看下载内容)
下载文件列表
MATLAB常用算法\光盘的算法程序索引.xls
..............\第10章 非线性方程组求解\DiffParam1.m
..............\........................\DiffParam2.m
..............\........................\mulBFS.m
..............\........................\mulConj.m
..............\........................\mulDamp.m
..............\........................\mulDFP.m
..............\........................\mulDiscNewton.m
..............\........................\mulDNewton.m
..............\........................\mulFastDown.m
..............\........................\mulGSND.m
..............\........................\mulGXF1.m
..............\........................\mulGXF2.m
..............\........................\mulMix.m
..............\........................\mulNewton.m
..............\........................\mulNewtonSOR.m
..............\........................\mulNewtonStev.m
..............\........................\mulNumYT.m
..............\........................\mulRank1.m
..............\........................\mulSimNewton.m
..............\........................\mulStablePoint.m
..............\........................\mulVNewton.m
..............\........................\SOR.m
..............\...1章 解线性方程组的直接法\conjgrad.m
..............\............................\Crout.m
..............\............................\Doolittle.m
..............\............................\followup.m
..............\............................\GaussJordanXQ.m
..............\............................\GaussXQAllMain.m
..............\............................\GaussXQByOrder.m
..............\............................\GaussXQLineMain.m
..............\............................\InvAddSide.m
..............\............................\qrxq.m
..............\............................\SymPos1.m
..............\............................\SymPos2.m
..............\............................\SymPos3.m
..............\............................\Yesf.m
..............\...2章 解线性方程组的迭代法\BGS.m
..............\............................\BJ.m
..............\............................\BSOR.m
..............\............................\conjgrad.m
..............\............................\crs.m
..............\............................\fastdown.m
..............\............................\gauseidel.m
..............\............................\grs.m
..............\............................\jacobi.m
..............\............................\JOR.m
..............\............................\preconjgrad.m
..............\............................\richason.m
..............\............................\rs.m
..............\............................\SOR.m
..............\............................\SSOR.m
..............\............................\twostep.m
..............\...3章 随机数生成\AELDist.m
..............\..................\BenuliDist.m
..............\..................\BGDist.m
..............\..................\CauthyDist.m
..............\..................\CombineLinear.m
..............\..................\GaussDist.m
..............\..................\LaplaceDist.m
..............\..................\MixMOD.m
..............\..................\MulMOD1.m
..............\..................\MulMOD2.m
..............\..................\PFQZ.m
..............\..................\PoisonDist.m
..............\..................\PowerDist.m
..............\..................\PrimeMOD.m
..............\..................\RelayDist.m
..............\..................\test.m
..............\..................\TwoDist.m
..............\..................\WBDist.m
..............\...4章 特殊函数计算\bessel.m
..............\....................\bessel2.m
..............\....................\besselm.m
..............\....................\besselm2.m
..............\....................\Beta.m
..............\....................\betap.m
..............\....................\CIx.m
..............\....................\EIx.m
..............\....................\EIx2.m
..............\....................\Ellipint1.m
..............\....................\Ellipi
..............\第10章 非线性方程组求解\DiffParam1.m
..............\........................\DiffParam2.m
..............\........................\mulBFS.m
..............\........................\mulConj.m
..............\........................\mulDamp.m
..............\........................\mulDFP.m
..............\........................\mulDiscNewton.m
..............\........................\mulDNewton.m
..............\........................\mulFastDown.m
..............\........................\mulGSND.m
..............\........................\mulGXF1.m
..............\........................\mulGXF2.m
..............\........................\mulMix.m
..............\........................\mulNewton.m
..............\........................\mulNewtonSOR.m
..............\........................\mulNewtonStev.m
..............\........................\mulNumYT.m
..............\........................\mulRank1.m
..............\........................\mulSimNewton.m
..............\........................\mulStablePoint.m
..............\........................\mulVNewton.m
..............\........................\SOR.m
..............\...1章 解线性方程组的直接法\conjgrad.m
..............\............................\Crout.m
..............\............................\Doolittle.m
..............\............................\followup.m
..............\............................\GaussJordanXQ.m
..............\............................\GaussXQAllMain.m
..............\............................\GaussXQByOrder.m
..............\............................\GaussXQLineMain.m
..............\............................\InvAddSide.m
..............\............................\qrxq.m
..............\............................\SymPos1.m
..............\............................\SymPos2.m
..............\............................\SymPos3.m
..............\............................\Yesf.m
..............\...2章 解线性方程组的迭代法\BGS.m
..............\............................\BJ.m
..............\............................\BSOR.m
..............\............................\conjgrad.m
..............\............................\crs.m
..............\............................\fastdown.m
..............\............................\gauseidel.m
..............\............................\grs.m
..............\............................\jacobi.m
..............\............................\JOR.m
..............\............................\preconjgrad.m
..............\............................\richason.m
..............\............................\rs.m
..............\............................\SOR.m
..............\............................\SSOR.m
..............\............................\twostep.m
..............\...3章 随机数生成\AELDist.m
..............\..................\BenuliDist.m
..............\..................\BGDist.m
..............\..................\CauthyDist.m
..............\..................\CombineLinear.m
..............\..................\GaussDist.m
..............\..................\LaplaceDist.m
..............\..................\MixMOD.m
..............\..................\MulMOD1.m
..............\..................\MulMOD2.m
..............\..................\PFQZ.m
..............\..................\PoisonDist.m
..............\..................\PowerDist.m
..............\..................\PrimeMOD.m
..............\..................\RelayDist.m
..............\..................\test.m
..............\..................\TwoDist.m
..............\..................\WBDist.m
..............\...4章 特殊函数计算\bessel.m
..............\....................\bessel2.m
..............\....................\besselm.m
..............\....................\besselm2.m
..............\....................\Beta.m
..............\....................\betap.m
..............\....................\CIx.m
..............\....................\EIx.m
..............\....................\EIx2.m
..............\....................\Ellipint1.m
..............\....................\Ellipi