文件名称:Multi-Sensor-Data-Fusion
- 所属分类:
- 图形图像处理(光照,映射..)
- 资源属性:
- [PDF]
- 上传时间:
- 2012-11-26
- 文件大小:
- 4.74mb
- 下载次数:
- 0次
- 提 供 者:
- y*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
《多传感器数据融合》英文参考书,比较有参考价值,适合雷达专业的研究者!-‘Multi-Sensor Data Fusion’ebook,useful
for the researcher majoring in radar!
for the researcher majoring in radar!
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Multi-Sensor Data Fusion
........................\front-matter.pdf
........................\Part I
........................\Part II
........................\Part III
........................\........\Bayesian Decision Theory .pdf
........................\........\Bayesian Inference .pdf
........................\........\Ensemble Learning .pdf
........................\........\front-matter.pdf
........................\........\Parameter Estimation .pdf
........................\........\Robust Statistics.pdf
........................\........\Sequential Bayesian Inference .pdf
........................\.......\Common Representational Format .pdf
........................\.......\front-matter.pdf
........................\.......\Sensor Value Normalization .pdf
........................\.......\Spatial Alignment .pdf
........................\.......\Temporal Alignment .pdf
........................\Part IV
........................\.......\front-matter.pdf
........................\.......\Sensor Management .pdf
........................\......\architecture.pdf
........................\......\front-matter.pdf
........................\......\introduction.pdf
........................\......\sensors.pdf
........................\Part V
........................\......\back-matter.pdf
........................\......\front-matter.pdf
........................\......\Sensor Management .pdf
........................\......\Software Sources .pdf
........................\front-matter.pdf
........................\Part I
........................\Part II
........................\Part III
........................\........\Bayesian Decision Theory .pdf
........................\........\Bayesian Inference .pdf
........................\........\Ensemble Learning .pdf
........................\........\front-matter.pdf
........................\........\Parameter Estimation .pdf
........................\........\Robust Statistics.pdf
........................\........\Sequential Bayesian Inference .pdf
........................\.......\Common Representational Format .pdf
........................\.......\front-matter.pdf
........................\.......\Sensor Value Normalization .pdf
........................\.......\Spatial Alignment .pdf
........................\.......\Temporal Alignment .pdf
........................\Part IV
........................\.......\front-matter.pdf
........................\.......\Sensor Management .pdf
........................\......\architecture.pdf
........................\......\front-matter.pdf
........................\......\introduction.pdf
........................\......\sensors.pdf
........................\Part V
........................\......\back-matter.pdf
........................\......\front-matter.pdf
........................\......\Sensor Management .pdf
........................\......\Software Sources .pdf